张庆竹
山东大学环境研究院院长、生态环境大数据创新研究中心主任,山东大学特聘教授,二级教授,国务院政府特殊津贴专家,山东省泰山学者特聘专家,教育部新世纪优秀人才,全国优秀科技工作者,全国优秀环境科技工作者,济南市优秀科技工作者,山东省优秀研究生指导教师,齐鲁巾帼科技创新之星,山东大学优秀教师;农工党山东省委委员、农工党山东大学委员会主委,青岛市政协第十三届、第十四届常委,山东省人大城乡建设与环境资源保护委员会顾问,山东省智库高端人才,济南市人大城乡建设环境保护委员会专家顾问,青岛市乡村振兴专家顾问团成员;IGAC中国工作组成员,中国环境学会大气环境分会副主任委员、常务委员;山东省环境学会常务理事;济南市环境学会理事长。主持国家自然科学基金重点项目、国家重点研发课题等,获生态环境部环境保护科学技术二等奖(排名第一)、获山东省高等学校优秀科研成果自然科学类一等奖(排名第一)等。发表学术论文近300篇。
研究领域:
生态环境大数据,大气环境化学(现场观测、实验室模拟、模型研究),生物酶作用下新污染物降解(实验与理论模拟)
教育经历
2000/09-2003/07,山东大学,化学与化工学院,博士
1997/09-2000/07,山东大学,化学与化工学院,硕士
1989/09-1993/07,山东大学,化学系,学士
工作经历
2022/12-至今,山东大学生态环境大数据创新研究中心主任
2017/11-至今,山东大学环境研究院院长
2007/07-2017/11,山东大学环境研究院常务副院长
2016/04-2018/08,济南市环境研究院副院长(挂职)
2004/07-2007/07,山东大学环境研究院,教授,博士生导师
2003/07-2004/07,香港城市大学,应用物理系,博士后
学术兼职
中国环境科学学会大气环境分会副主任委员、常务委员
山东省环境学会常务理事
济南市环境学会理事长
山东省生态环境保护专家委员会委员
IGAC(The International Global Atmospheric Chemistry Project)中国工作组成员
中国毒理学会环境与生态毒理学专业委员会常务委员
中国气象学会大气成分委员会委员
中国自然资源学会资源循环利用专业委员会委员
获奖及荣誉
2023年,二级教授
2023年,山东省泰山学者特聘专家
2022年,齐鲁巾帼科技创新之星
2021年,山东大学优秀教师
2020年,国务院政府特殊津贴专家
2020年,济南市优秀科技工作者
2019年,山东大学特聘教授
2019年,山东省优秀研究生指导教师
2018年,山东省泰山学者特聘专家
2018年,山东省高等学校科学技术三等奖(排名第一)
2010年,环保部环境保护科学技术二等奖(排名第一)
2010年,山东省高等学校优秀科研成果自然科学类一等奖(排名第一)
2008年,山东省自然科学杰出青年基金
2005年,教育部“新世纪优秀人才支持计划”
2005年,山东大学十大科技创新人物
主持或参加科研项目
1. 国家基金委重点项目,22236004,基于多尺度计算与大数据技术的VOCs氧化促进海洋二次颗粒物形成机理研究,2023/01- 2027/12,280万元,主持。
2. 国家重点研发计划课题,2022YFC3204405,典型支流三水融合监-管-控-治一体化运维智能平台,2022/11- 2026/04,277万元,主持。
3. 青岛市挥发性有机物与氮氧化物差异化管控试点项目,1460022053,青岛市臭氧生成潜势与规律,2022/11- 2023/11,106万元,主持。
4. 横向项目,山东省工业源全口径挥发性有机物分物种排放清单编制项目,2022/09- 2023/08,138万元,主持。
5. 横向项目,典型城市VOCs来源解析,2022/09-2022/11,25万元,主持。
6. 横向项目,典型城市夏季臭氧解析,2022/03-2022/12, 15.3万元,主持。
7. 横向项目,海南省机动车尾气中芳香烃污染物对臭氧生成潜势研究项目,2021/03-2021/12, 23.01万元
8. 国家基金委面上项目,42075106,Criegee自由基与有机胺的反应及其产物参与新粒子形成的机理研究,2021/01- 2024/12,70.8万元,主持。
9. 山东省重点研发计划项目,2020CXGC011402,多源大气污染物智能控制与区域复合污染防控技术集成及装备研发子课题,2020/12- 2023/12,51.03万元,主持。
10. 国家基金委面上项目,21876102,卤代烃类挥发性有机污染物的非均相转化机理模拟研究,2019/01-2022/12,76.8万元,主持。
11. 国家科技重大专项,2017ZX07202002,重污染河流负荷削减与污染控制技术集成与示范(子课题),2017/01-2020/12,170万元,主持。
12. 国家基金委面上项目,21577082,生物酶作用下多氯联苯的降解机理研究,2016/01-2019/12,82.8万元,主持。
13. 国家基金委重点项目,21337001,新型有机污染物降解机理的量子化学计算与分子模拟,2014/01-2018/12,300万元,主持。
14. 山东大学交叉学科培育项目,2012JC030,生物酶作用下持久性有机污染物的降解机理与构效关系,2012/01-2014/12,30万元,主持。
15. 863项目子课题,2012AA06A301,有机化学品毒理效应的计算毒理学预测技术,2012/01-2014/12,97.3万元,主持。
16. 国家基金委面上项目,21177077,QM/MM方法研究生物酶作用下典型有机农药的降解机理,2012/01- 2015/12,65万元,主持。
17. 科技部项目,11460005321104,环渤海地区环境保护战略研究,2011/01-2012/12,80万元,主持。
18. 山东大学交叉学科培育项目,2009JC016,持久性有机污染物的降解机理与构效关系,2010/06-2012/12,40万元,主持。
19. 国家基金委面上项目,20977059,大气环境中典型有机农药的降解机理,2010/01- 2012/12,36万元,主持。
20. 国家基金委国际(地区)合作与交流项目,2091030202,第11届国际大气科学与空气质量会议,2009/04-2009/08,5万元,主持。
21. 山东省自然科学基金委省杰青基金项目,JQ200804,量子化学与分子模拟方法研究有机氯农药在环境中的降解机理,2008/12- 2011/12,50万元,主持。
22. 国家基金委面上项目,20777047,大气环境中萜烯形成二次有机气溶胶的理论研究,2008/01- 2010/12,28万元,主持。
23. 973项目子课题,05CB422203,典型天气系统酸沉降过程的飞机-地基立体观测研究,2008/01-2010/12,56.48万元,主持。
24. 国家基金委重点项目,20737001,持久性有机污染物的典型环境过程及构效关系研究,2008/01-2008/12,99万元,主持。
25. 973项目子课题,11460005270607,酸雨输送与调控原理,2006/06-2007/12,47.48万元,主持。
26. 国家基金委面上项目,20507013,致癌性多环芳烃在大气中化学转化的微观机制,2006/01-2008/12,25万元,主持。
27. 国际合作,11460005280504,中国超大城市污染对区域大气环境影响,2005/04-2005/12,20.92万元,主持。
28. 山东省厅项目,2004046,山东省重点城市气溶胶PM2.5污染水平及来源解析研究,2005/01-2006/12,20万元,主持。
部分发表学术论文
[1] Zhu, L., Xu, G., Zhang, Q., Wang, G., Wang, W. and Wang, Q. 2024. Semirational Design Strategy to Enhance the Thermostability and Catalytic Activity of Cytochrome P450 105D7 for the Degradation of the Pharmaceutically Active Compounds: Diclofenac. Environmental Science & Technology.
[2] Yue, Y., Fan, J., Xin, G., Huang, Q., Wang, J.-b., Li, Y., Zhang, Q. and Wang, W. 2021. Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach. Environmental Science & Technology 55(14), 9817-9825.
[3] Zhao, X., Shi, X., Ma, X., Wang, J., Xu, F., Zhang, Q., Li, Y., Teng, Z., Han, Y., Wang, Q. and Wang, W. 2021. Simulation Verification of Barrierless HONO Formation from the Oxidation Reaction System of NO, Cl, and Water in the Atmosphere. Environmental Science & Technology 55(12), 7850-7857.
[4] Zhang, Q., Gao, R., Xu, F., Zhou, Q., Jiang, G., Wang, T., Chen, J., Hu, J., Jiang, W. and Wang, W. 2014. Role of Water Molecule in the Gas-Phase Formation Process of Nitrated Polycyclic Aromatic Hydrocarbons in the Atmosphere: A Computational Study. Environmental Science & Technology 48(9), 5051-5057.
[5] Li, Y., Shi, X., Zhang, Q., Hu, J., Chen, J. and Wang, W. 2014. Computational Evidence for the Detoxifying Mechanism of Epsilon Class Glutathione Transferase Toward the Insecticide DDT. Environmental Science & Technology 48(9), 5008-5016.
[6] Sun, X., Zhang, C., Zhao, Y., Bai, J., Zhang, Q. and Wang, W. 2012. Atmospheric Chemical Reactions of 2,3,7,8-Tetrachlorinated Dibenzofuran Initiated by an OH Radical: Mechanism and Kinetics Study. Environmental Science & Technology 46(15), 8148-8155.
[7] Yu, W., Hu, J., Xu, F., Sun, X., Gao, R., Zhang, Q. and Wang, W. 2011. Mechanism and Direct Kinetics Study on the Homogeneous Gas-Phase Formation of PBDD/Fs from 2-BP, 2,4-DBP, and 2,4,6-TBP as Precursors. Environmental Science & Technology 45(5), 1917-1925.
[8] Xu, F., Yu, W., Zhou, Q., Gao, R., Sun, X., Zhang, Q. and Wang, W. 2011. Mechanism and Direct Kinetic Study of the Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Formations from the Radical/Radical Cross-Condensation of 2,4-Dichlorophenoxy with 2-Chlorophenoxy and 2,4,6-Trichlorophenoxy. Environmental Science & Technology 45(2), 643-650.
[9] Xu, F., Yu, W., Gao, R., Zhou, Q., Zhang, Q. and Wang, W. 2010. Dioxin Formations from the Radical/Radical Cross-Condensation of Phenoxy Radicals with 2-Chlorophenoxy Radicals and 2,4,6-Trichlorophenoxy Radicals. Environmental Science & Technology 44(17), 6745-6751.
[10] Zhang, Q., Yu, W., Zhang, R., Zhou, Q., Gao, R. and Wang, W. 2010. Quantum Chemical and Kinetic Study on Dioxin Formation from the 2,4,6-TCP and 2,4-DCP Precursors. Environmental Science & Technology 44(9), 3395-3403.
[11] Zhang, Q. 2010. A Quantum Mechanical Study on the Formation of PCDD/Fs from 2-Chlorophenol as Precursor. Environmental Science & Technology 44(9), 3645-3645.
[12] Xu, F., Wang, H., Zhang, Q., Zhang, R., Qu, X. and Wang, W. 2010. Kinetic Properties for the Complete Series Reactions of Chlorophenols with OH Radicals—Relevance for Dioxin Formation. Environmental Science & Technology 44(4), 1399-1404.
[13] Qu, X., Wang, H., Zhang, Q., Shi, X., Xu, F. and Wang, W. 2009. Mechanistic and Kinetic Studies on the Homogeneous Gas-Phase Formation of PCDD/Fs from 2,4,5-Trichlorophenol. Environmental Science & Technology 43(11), 4068-4075.
[14] Zhang, Q., Qu, X., Wang, H., Xu, F., Shi, X. and Wang, W. 2009. Mechanism and Thermal Rate Constants for the Complete Series Reactions of Chlorophenols with H. Environmental Science & Technology 43(11), 4105-4112.
[15] Zhang, Q., Li, S., Qu, X., Shi, X. and Wang, W. 2008. A Quantum Mechanical Study on the Formation of PCDD/Fs from 2-Chlorophenol as Precursor. Environmental Science & Technology 42(19), 7301-7308.
[16] Zhang, Q., Qu, X. and Wang, W. 2007. Mechanism of OH-Initiated Atmospheric Photooxidation of Dichlorvos: A Quantum Mechanical Study. Environmental Science & Technology 41(17), 6109-6116.
[17] Wang, H., Guan, X., Li, J., Peng, Y., Wang, G., Zhang, Q., Li, T., Wang, X., Meng, Q., Chen, J., Zhao, M. and Wang, Q. 2024. Quantifying the pollution changes and meteorological dependence of airborne trace elements coupling source apportionment and machine learning. Science of The Total Environment 948, 174452.
[18] Zhu, L., Guan, X., Li, J., Peng, Y., Zhang, X., Gong, A., Li, M., Xie, H., Chen, S., Li, J., Wang, H., Zhang, Q. and Wang, W. 2024. Characterization of VOCs emissions and associated health risks inherent to the packaging and printing industries in Shandong Province, China. Science of The Total Environment 946, 174108.
[19] Zhou, M., Xu, Y., Liu, L., Zhang, Q., Sun, R., Hu, Z. and Luo, G. 2024. In situ self-activation strategy for the synthesis of double-layered S/Cl co-doped sorbents for elemental mercury removal from oxy-fuel combustion flue gas. Applied Surface Science 662, 160137.
[20] Tao, C., Peng, Y., Zhang, Q., Zhang, Y., Gong, B., Wang, Q. and Wang, W. 2024. Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations. Atm(Zhu et al., 2024)os. Chem. Phys. 24(7), 4177-4192.
[21] Ren, Y., Guan, X., Peng, Y., Gong, A., Xie, H., Chen, S., Zhang, Q., Zhang, X., Wang, W. and Wang, Q. 2024. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry. Journal of Environmental Management 357, 120730.
[22] Tao, C., Zhang, Q., Huo, S., Ren, Y., Han, S., Wang, Q. and Wang, W. 2024. PM2.5 pollution modulates the response of ozone formation to VOC emitted from various sources: Insights from machine learning. Science of The Total Environment 916, 170009.
[23] Li, M., Zhang, Y., Yu, X., Li, L., Wang, S., Zhang, Q., Wang, W. and Wang, Q. 2024. Mechanistic insights into Criegee intermediates with benzoic acid at gas-phase and air-water interface and nucleation of product. Atmospheric Environment 320, 120338.
[24] Tao, C., Jia, M., Wang, G., Zhang, Y., Zhang, Q., Wang, X., Wang, Q. and Wang, W. 2024. Time-sensitive prediction of NO2 concentration in China using an ensemble machine learning model from multi-source data. Journal of Environmental Sciences 137, 30-40.
[25] Wang, Z., Wang, Z., Wang, G., Zhang, Q., Wang, Q. and Wang, W. 2023. New insight into biodegradation mechanism of phenylurea herbicides by cytochrome P450 enzymes: Successive N-demethylation mechanism. Environment International 182, 108332.
[26] Wang, S., Zhang, Q., Wang, W. and Wang, Q. 2023. Unexpected enhancement of sulfuric acid-driven new particle formation by alcoholic amines: The role of ion-induced nucleation. Journal of Environmental Management 347, 119079.
[27] Li, T., Zhang, Q., Wang, X., Peng, Y., Guan, X., Mu, J., Li, L., Chen, J., Wang, H. and Wang, Q. 2023. Characteristics of secondary inorganic aerosols and contributions to PM2.5 pollution based on machine learning approach in Shandong Province. Environmental Pollution 337, 122612.
[28] Dong, Z., Tang, R., Liu, H., Zhang, Q., Zong, W., Cheng, J. and Shi, X. 2023. The formation mechanism of highly oxygenated organic molecules produced by toluene in the urban atmosphere. Atmospheric Environment 295, 119555.
[29] Zhu, L., Maskeri, M.A., Ramirez, M., Le Bideau, F., Ghosez, L. and Houk, K.N. 2022. Computational Exploration of Anomalous Regioselectivities in Cycloadditions of Ketenes to Oxazolines. The Journal of Organic Chemistry 87(5), 3613-3622.
[30] Wang, S., Zhang, Q., Wang, G., Wei, Y., Wang, W. and Wang, Q. 2023. The neglected autoxidation pathways for the formation of highly oxygenated organic molecules (HOMs) and the nucleation of the HOMs generated by limonene. Atmospheric Environment 304, 119727.
[31] Wei, Y., Zhang, Q., Wang, W. and Wang, Q. 2023. Hydrolysis and aminolysis of aldehydes catalyzed by water and amines: Formation of diols/aminol and the implication to atmospheric particle formation. Atmospheric Environment 294, 119462.
[32] Wang, W., Zhang, R., Liu, Z., Wang, W., Zhang, Q. and Wang, Q. 2022. Periodic DFT calculation for the formation of EPFRs from phenol on γ-Al2O3 (110): Site-dependent mechanism and the role of ambient water. Journal of Environmental Chemical Engineering 10(5), 108386.
[33] Zhang, S., Zhang, Q., Díaz-Somoano, M., Dang, J., Xu, Y., Zhao, Y. and Zhang, J. 2022. A kinetic study on mercury oxidation by HCl over typical Mn-based SCR catalysts. Fuel 329, 125421.
[34] Wang, W., Liu, Z., Li, Y., Wang, W., Zhang, Q. and Wang, Q. 2022. Heterogeneous formation of EPFRs from aromatic adsorbates on the carbonaceous particulate matter. Applied Surface Science 602, 154316.
[35] Zhang, S., Zhang, Q., Díaz-Somoano, M., Dang, J., Xu, Y., Zhao, Y. and Zhang, J. 2022. Influence of SO3 on the MnOx/TiO2 SCR catalyst for elemental mercury removal and the function of Fe modification. Journal of Hazardous Materials 433, 128737.
[36] Wei, Y., Zhang, Q., Huo, X., Wang, W. and Wang, Q. 2022. The reaction of Criegee intermediates with formamide and its implication to atmospheric aerosols. Chemosphere 296, 133717.
[37] Ding, Z., Wang, X., Yi, Y., Huo, X., Wang, W. and Zhang, Q. 2021. Understanding the atmospheric fate of triphenylene: The oxidation mechanism initiated by OH radicals. Chemical Physics Letters 785, 139158.
[38] Cui, W., Xu, Y., Luo, G., Zhang, Q., Li, Z. and Zhang, S. 2021. Enhanced mercury removal performance of Cu-Fe binary oxide sorbents modified by non-thermal plasma. Chemical Engineering Journal 425, 131851.
[39] Wei, Y., Xu, F., Ma, X., Li, L., Wang, W., Huo, X., Zhang, Q. and Wang, W. 2022. Theoretical study of the reaction mechanism between Criegee intermediates and hydroxyl radicals in the presence of ammonia and amine. Chemosphere 287, 131877.
[40] Li, L., Zhang, R., Ma, X., Wei, Y., Zhao, X., Zhang, R., Xu, F., Li, Y., Huo, X., Zhang, Q. and Wang, W. 2021. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study. Chemosphere 280, 130709.
[41] Zhang, R., Li, P., Shi, X., Zhang, R., Wang, J., Li, Y., Zhang, Q. and Wang, W. 2021. Insights into the metabolic mechanism of PBDEs catalyzed by cytochrome P450 enzyme 3A4: A QM/MM study. Chemosphere 278, 130430.
[42] Zhang, R., Li, P., Zhang, R., Shi, X., Li, Y., Zhang, Q. and Wang, W. 2021. Computational study on the detoxifying mechanism of DDT metabolized by cytochrome P450 enzymes. Journal of Hazardous Materials 414, 125457.
[43] Zhu, L., Huo, X., Zhou, J., Zhang, Q. and Wang, W. 2021. Metabolic activation mechanism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB136) by cytochrome P450 2B6: A QM/MM approach. Science of The Total Environment 776, 145579.
[44] Xu, Y., Luo, G., Zhang, Q., Cui, W., Li, Z. and Zhang, S. 2021. Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas. Journal of Hazardous Materials 412, 125226.
[45] Xu, Y., Luo, G., Zhang, Q., Li, Z., Zhang, S. and Cui, W. 2021. Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas. Fuel 285, 119221.
[46] Zhu, L., Zhou, J., Zhang, Q., Li, Y. and Wang, W. 2021. Computational study on the metabolic activation mechanism of PeCDD by Cytochrome P450 1A1. Journal of Hazardous Materials 405, 124276.
[47] Ding, Z., Yi, Y., Wang, W. and Zhang, Q. 2021. Atmospheric degradation of chrysene initiated by OH radical: A quantum chemical investigation. Chemosphere 263, 128267.
[48] Xu, Y., Luo, G., Zhou, M., Zhang, Q., Li, Z. and Zhang, S. 2021. Natural ferruginous manganese ore for efficient immobilization of elemental mercury from coal combustion flue gas. Fuel 283, 118946.
[49] Ding, Z., Yi, Y., Wang, W. and Zhang, Q. 2020. Atmospheric oxidation of indene initiated by OH radical in the presence of O2 and NO: A mechanistic and kinetic study. Chemosphere 259, 127331.
[50] Wang, J., Tang, X., Zhang, Y., Li, Y., Zhu, L., Zhang, Q. and Wang, W. 2020. How to complete the tautomerization and substrate-assisted activation prior to C-C bond fission by <i>meta</i>-cleavage product hydrolase LigY? Catalysis Science & Technology 10(17), 5856-5869.
[51] Ma, X., Zhao, X., Ding, Z., Wang, W., Wei, Y., Xu, F., Zhang, Q. and Wang, W. 2020. Determination of the amine-catalyzed SO3 hydrolysis mechanism in the gas phase and at the air-water interface. Chemosphere 252, 126292.
[52] Zhang, S., Zhang, Q., Zhao, Y., Yang, J., Xu, Y. and Zhang, J. 2020. Enhancement of CeO<sub>2</sub> modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas. Rsc Advances 10(42), 25325-25338.
[53] Song, Z., Yue, Y., Feng, S., Sun, H., Li, Y., Xu, F., Zhang, Q. and Wang, W. 2020. Cysteine dioxygenase catalyzed CF bond cleavage: An in silico approach. Chemical Physics Letters 750, 137449.
[54] Ding, Z., Yi, Y., Wang, W. and Zhang, Q. 2020. Understanding the role of Cl and NO3 radicals in initiating atmospheric oxidation of fluorene: A mechanistic and kinetic study. Science of The Total Environment 716, 136905.
[55] Zhu, L., Zhou, J., Zhang, R., Tang, X., Wang, J., Li, Y., Zhang, Q. and Wang, W. 2020. Degradation mechanism of biphenyl and 4-4′-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach. Chemosphere 247, 125844.
[56] Ma, X., Zhao, X., Wei, Y., Wang, W., Xu, F., Zhang, Q. and Wang, W. 2020. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications. Science of The Total Environment 715, 136812.
[57] Zhou, J., Zhu, L., Chen, J., Wang, W., Zhang, R., Li, Y., Zhang, Q. and Wang, W. 2020. Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of The Total Environment 709, 135897.
[58] Wei, Y., Xu, F., Ma, X., Wang, W. and Zhang, Q. 2020. The role of ammonia and amines in the isomerization of Criegee intermediates: A theoretical study. Chemical Physics Letters 743, 137140.
[59] Ma, X., Zhao, X., Huang, Z., Wang, J., Lv, G., Xu, F., Zhang, Q. and Wang, W. 2020. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface. Science of The Total Environment 707, 135804.