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A B S T R A C T   

The air quality in China has been improved substantially, however fine particulate matter (PM2.5) still remain at 
a high level in many areas. PM2.5 pollution is a complex process that is attributed to gaseous precursors, 
chemical, and meteorological factors. Quantifying the contribution of each variable to air pollution can facilitate 
the formulation of effective policies to precisely eliminate air pollution. In this study, we first used decision plot 
to map out the decision process of the Random Forest (RF) model for a single hourly data set and constructed a 
framework for analyzing the causes of air pollution using multiple interpretable methods. Permutation impor-
tance was used to qualitatively analyze the effect of each variable on PM2.5 concentrations. The sensitivity of 
secondary inorganic aerosols (SIA): SO2-

4 , NO-
3 and NH+

4 to PM2.5 was verified by Partial dependence plot (PDP). 
Shapley Additive Explanation (Shapley) was used to quantify the contribution of drivers behind the ten air 
pollution events. The RF model can accurately predict PM2.5 concentrations, with determination coefficient (R2) 
of 0.94, root mean square error (RMSE) and mean absolute error (MAE) of 9.4 μg/m3 and 5.7 μg/m3, respec-
tively. This study revealed that the order of sensitivity of SIA to PM2.5 was NH+

4 ＞NO-
3＞SO2-

4 . Fossil fuel and 
biomass combustion may be contributing factors to air pollution events in Zibo in 2021 autumn–winter. NH+

4 
contributed 19.9–65.4 μg/m3 among ten air pollution events (APs). K, NO-

3, EC and OC were the other main 
drivers, contributing 8.7 ± 2.7 μg/m3, 6.8 ± 7.5 μg/m3, 3.6 ± 5.8 μg/m3 and 2.5 ± 2.0 μg/m3, respectively. 
Lower temperature and higher humidity were vital factors that promoted the formation of NO-

3. Our study may 
provide a methodological framework for precise air pollution management.   

1. Introduction 

In the past few years, many cities have suffered severe air pollution 
(Andersson et al., 2015; Peng et al., 2016) in China, which seriously 
affected human health and life (Bourdrel et al., 2017; Lee et al., 2015; 
Xing et al., 2016). Therefore, the Chinese government implemented the 
Air Pollution Prevention and Control Action Plan in 2013, and the 
Three-year Action Plan for Winning the Blue Sky Defense War in 2018 to 
solve the air pollution problems, which led to the significant improve-
ment of air quality (Ma et al., 2019; Zhang et al., 2019). However, air 
pollution problems related to high concentrations of fine particulate 
matter (PM2.5) still occur in many areas. Therefore, it is essential to 
analyze the drivers affecting PM2.5 formation during air pollution 

periods. 
In previous studies, chemical transport models (CTMs) have been 

widely used to study PM2.5 pollution by scenario simulation and pollu-
tion process analysis (Chen et al., 2019; Weagle et al., 2018; Zheng et al., 
2015). However, CTMs are often subject to large biases due to un-
certainties in emission inventories, and physical and chemical parame-
ters (Hu et al., 2017; Lam et al., 2021). Recently, machine learning 
models have been widely used to study air pollution because of their 
excellent performance (Geng et al., 2021; Wang et al., 2020; Wei et al., 
2019). For example, machine learning models generally outperform 
CTMs and traditional statistical analysis (e.g., linear models) in pre-
dicting PM2.5 (Vu et al., 2019; Yang et al., 2021). However, the black- 
box nature and complex system mechanisms of many machine 
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learning models make the results hard to interpret. With the develop-
ment of technology, more and more interpretable tools are becoming 
available. The Partial dependence plot (PDP) method was proposed and 
extended (Friedman, 2001; Goldstein et al., 2015) to test machine 
learning models, and was also applied to the atmospheric science field 
(Wei et al., 2022; Yang et al., 2022; Zhang et al., 2022). To overcome the 
barriers of black box models, a feature attribution technique – Shapley 
Additive Explanation (Shapley) (Lundberg and Lee, 2017) has been 
proposed to quantify the overall and local impact of variables on the 
results, which has been applied in the medical field (Alfi et al., 2022; 
Lewin-Epstein et al., 2021), but rarely in the atmospheric field (Hou 
et al., 2022). These interpretable tools can assist machine learning 
models to explain the causes of air pollution well. 

Zibo, a heavily polluted industrial city, is often listed as one of the 
top ten most polluted cities in China. Many ceramic, heavy and light 
industries have led to serious air pollution in Zibo. As the capital city of 
China, Beijing has received widespread attention in recent years due to 
frequent and serious haze events (Lu et al., 2019; Wang et al., 2020; 
Wang et al., 2021; Xu et al., 2019). Zibo is located in the southeast of 
Beijing, upwind of Beijing. Considering the regional transport, Beijing 
will be affected by pollutants from Zibo. In addition, Zibo will also be 
affected by the surrounding urban environment. Therefore, Zibo is a 
donor and a receptor of regional pollutants transport. Therefore, quan-
tifying the contributions of different variables to air pollution in Zibo 
can provide pollution control ideas for Zibo itself, Shandong Province 
and even Beijing. 

In this study, we analyzed four-month online data measured by the 
Zibo Atmospheric Environment Super Monitoring Station in 2021 
autumn–winter and quantified the contributions of precursor emissions, 
meteorological conditions, and chemical and elemental composition to 
air pollution events. Firstly, we conducted a qualitative analysis of 
various drivers associated with PM2.5 using Permutation importance. On 
this basis, the sensitivity of the three main secondary inorganic aerosols 
(SIA), SO2-

4 , NO-
3 and NH+

4 , to PM2.5 was analyzed using the PDP method. 
The PM2.5 concentrations higher than 75 μg/m3 were divided into ten air 
pollution events (APs), and the SHAP method was used to quantify the 
contributions of various variables at each AP stage. Finally, we explored 
the formation mechanism of NO-

3. The use of multiple interpretable 
methods may provide a set of ideas for analyzing the causes of air 

pollution. 

2. Materials and methods 

2.1. Study area and data source 

The study area was in Zibo, Shandong Province, which is one of the 
most polluted industrial cities in China. All data (hourly resolution) from 
September 1 to December 22 in 2021 were measured by the Atmo-
spheric Environment Super Monitoring Station (Fig. 1, 36.86◦N, 
118.14◦E). The dataset consists of air pollutants (PM2.5, carbon mon-
oxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3)), 
meteorological data (wind speed (WS), wind direction (WD), tempera-
ture (T), pressure (P), relative humidity (RH)), ion data (Cl-, NH+

4 , NO-
3, 

etc.), carbon data (organic carbon (OC), element carbon (EC)) and 
element data (Na, Fe, Ni, K, etc.). 

PM2.5, NO2, SO2, CO and O3 were measured by 5014i Beta Contin-
uous Ambient Particulate Monitor, Model 42i NO-NO2-NOx Analyzer, 
Model 43i SO2 Analyzer, Model 48i CO Analyzer and Model 49i O3 
Analyzer, respectively. Ion species were measured by in-situ gas and 
aerosol compositions monitor (IGAC). An atmospheric heavy metal 
analyzer (ZSTK-HMCA-3200) and an atmospheric carbon composition 
analyzer (sunset OC_EC model4) were used to measure metallic ele-
ments (Na, Fe, Ni, K, etc.) and carbon data (OC, EC), respectively. 
Meteorological data (T, RH, P, WS, WD) was measured by a miniature 
portable weather station (WXT520). 

2.2. Machine learning method 

In this study, five types of experimentally measured data were 
entered into the Random Forest (RF) model as input. The results of the 
model were analyzed for interpretability using Permutation importance, 
PDP and SHAP. 

2.2.1. Random Forest 
RF model is a representative bagging integration algorithm consist-

ing of decision trees as base evaluators, which was proposed (Breiman, 
2001) in 2001 to solve classification and regression problems. The 
central idea of the RF model is to construct multiple independent 

Fig. 1. The black dot on the left panel showed the location of Zibo, a city with high industrial pollution, and observation site was shown on the right panel. The left 
panel was colored by PM2.5 emission inventory (Li et al., 2017b; Zheng et al., 2018) in 2017 while land-use types were used to color the right panel, i.e. light blue for 
dry land, and dark green for urban land, etc. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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evaluators and then average or majority vote on their predictions to 
determine the outcome of the integrated evaluator results. Compared 
with other machine learning models, RF model is fast to train, highly 
accurate and easy to implement, and have been widely used in other 
studies (Chen et al., 2018; Rahman et al., 2021; Wang et al., 2022a; 
Wang et al., 2022b). In order to train a model in line with the content of 
the study, we ordered the model to divide the data into a training set and 
a testing set in a 7:3 ratio, and a more specific explanation can be found 
in Text S1. Text S1-S2, Figure S1-S2 and Table S1 detailed the model 
training and hyper-parameters selecting processes. 

2.2.2. Model evaluation 
Three evaluation metrics were employed to evaluate the regression 

performance of the RF model: determination coefficient (R2), mean 
absolute error (MAE) and root mean square error (RMSE). 

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − y)2 (1)  

MAE =
1
N

∑N

i=1
|yi − ŷi| (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ (3) 

where N represents the total number of data points. i is the ith data-
point. yi is the observed value (μg/m3) of the PM2.5. ŷi is the predicted 
value (μg/m3). y is the average of the observed value (μg/m3). 

2.2.3. Model interpretation 
(1) Permutation importance method. 
Permutation importance was performed by the Eli5 toolkit to 

calculate the average importance of each feature to PM2.5 after the 
column data was disrupted. More information about Permutation 
importance and Eli5 toolkit were listed in Text S3. The theory calcula-

tion formula is as follows:ij = s −
∑k

k=1
sk,j

k (4). 
The feature j was rearranged and then repeated k times to construct 

the polluted dataset Dck,j .ij is the weight of feature j. s is the performance 
score of the RF model on test dataset D and k is the number of iterations. 
j represents each feature of the test dataset and sk,j is the performance 
score of the RF model on test dataset Dck,j . 

(2) Partial dependence plot. 
PDP shows the dependence of one or two features on the predicted 

results of the machine learning models (Friedman, 2001), which is 
defined as: 

f̂ xS
(xS) = ExC[ f̂ (xS, xC) ] =

∫

f̂ (xS, xC)dP(xC) (5) 

XS represents a set containing only one or two features (in our study, 
S refers to two features). The features in set S are those that this study 
focuses on to reveal their impact on the prediction results. XC is the set of 
other features. XS and XC constitute the total features and are used as 
input features for the model. f̂ is the Random Forest model. 

(3) Shapley Additive Explanation method. 
SHAP (Lundberg et al., 2020; Lundberg et al., 2018) is an approach 

based on the coalitional game theory which was used to allocate total 
revenue to game players (Shapley, 1953). Briefly, each feature variable 
in the dataset can be treated as a player. The predictions obtained by 
training the model using this dataset can be considered as the benefit of 
the collaboration of many participants to complete the project. Shapley 
value distributes the benefits of cooperation fairly by considering the 
contributions made by each player, that is, the relationship between 
each characteristic variable and each predicted value can be calculated 
by shapley value. It has the following functional expressions (eq (6)). 

f (xi) = ϕ0(f , x)+
∑N

j=1
ϕj(f , xi) (6) 

where f(xi) is the predicted value generated for each sample (xi) with 
N features. ϕ0(f , x) is the base value representing the expected value of 
RF model output over the dataset. ϕj(f , xi) is the Shapley value of the 
impact of the feature j in the sample (xi) on the predicted outcome of the 
sample. 

Further, ϕj(f , xi) represents the Shapley value of each feature in each 
sample, which is a weighted average over all possible combinations of 
variable subsets (Lundberg and Lee, 2017). 

ϕj(f , x) =
∑

s⊆{x1 ,x2 ,⋯xn}\{xj}

|S|(N − |S| − 1 )!
N!

(
fx
(
S ∪

{
xj
} )

− fx(S)
)

(7) 

where ϕj(f , x) is the Shapely value of j feature. S is a subset of the 
features used in the model. x1, x2⋯xn are the features. |S| is the number 
of non-zero entries in S. fx(S) is the predicted value of subset S. 

3. Results and discussion 

3.1. Characteristics of the detected data 

Based on the Air Quality Index (AQI) and previous studies (Li et al., 
2017a; Zheng et al., 2015b), an hourly concentration threshold of 75 μg/ 
m3 was used to distinguish polluted hours from clean hours: clean hours 
(C, PM2.5＜75 μg/m3), polluted hours (P, 75 ≤ PM2.5 ≤ 250 μg/m3), and 
highly polluted hours (H, PM2.5＞250 μg/m3). According to this crite-
rion, ten APs (air pollution) including AP1 (10:00, September 16), AP2 
(9, October) AP3 (14, October), AP4 (21–31, October), AP5 (3–5, 
November), AP6 (13–20, November), AP7 (24–29, November), AP8 
(4–7, December), AP9 (14–16, December) and AP10 (20–22, December) 
were considered as air pollution periods (shaded parts of Fig. 2) in our 
study. 

The hourly measurements of PM2.5, gaseous pollutant concentra-
tions, and meteorological conditions during the observation period 
(September 1 to December 22, 2021) were presented in Fig. 2. The 
hourly average concentration of PM2.5 in the ten air pollution events was 
111.9 ± 30.6 μg/m3, which was much higher than the ambient air 
quality standard in China (35 μg/m3, GB 3095–2012). 

The hourly average concentrations of three gas pollutants, CO, SO2 
and NO2, were 0.9 ± 0.4 μg/m3, 13.1 ± 8.0 μg/m3 and 39.1 ± 20.8 μg/ 
m3, respectively. The three gaseous pollutants had a similar trend, which 
was easy to understand considering that they were the primary emission 
from coal combustion, factory exhaust emissions, etc. However, the O3 
(hourly average concentration 55.3 ± 43.3 μg/m3) showed an opposite 
trend to that of NO2, which was due to the existence of a photochemical 
cycle between NOx and O3 according to the previous studies (Crutzen, 
1979). The hourly average temperature during the data collection 
period was 13.4 ± 8.3℃ and the relative humidity was 72.1 ± 23.0%. 

NO-
3, NH+

4 , SO2-
4 , OC and EC were the main components of PM2.5 

(Table 1), with hourly average concentrations of 13.1 ± 13.8 μg/m3, 9.4 

± 6.2 μg/m3, 7.3 ± 5.6 μg/m3, 4.5 ± 2.9 μg/m3 and 1.6 ± 1.1 μg/m3, 
accounting for 27.6%, 19.6% 15.3%, 9.5% and 3.3%, respectively. 
Compared with the data collected in September, the hourly average 
concentrations of ionic species and carbon species both showed a 
gradient increase in the latter three months, especially in December. 
This is due to the fact that Zibo is located in the north of China, where 
the temperature of winter is low and temperature inversions are 
frequent, and gaseous pollutants emitted from coal-fired heating and 
vehicle exhaust are not easily diffused, resulting in lower air quality in 
winter. In addition, along the C-P-H order, the specie concentrations of 
components such as carbonaceous species and SIA increased signifi-
cantly. During the polluted hours, the hourly average concentrations of 
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NO−
3 , NH+

4 , SO2−
4 , OC and EC increased to 33.5 μg/m3, 18.0 μg/m3, 12.6 

μg/m3, 8.2 μg/m3, and 3.0 μg/m3, respectively, which were 4.2, 2.5, 2.1, 
2.3, and 2.5 times higher than the those measured during the clean 
period. In the heavily polluted period, the hourly average concentrations 
of SO2−

4 , NO−
3 , and NH+

4 were 10.1, 7.8, and 5.3 times higher than those 
in the clean period, respectively, indicating that these substances may be 

the main cause of PM2.5 pollution. 
The concentrations of elements in the Zibo region during the four 

months were presented in Table 2. As can be seen, the total monthly 
average concentrations of the 11 elements were 88.9, 161.5, 220.9 and 
229.2 ng/m3, accounting for 4.1%, 3.5%, 4.0% and 4.1% of the total 
PM2.5 mass concentration, respectively. The total average concentration 
of crustal elements (Al, K, Ca and Fe) was 413.2 ng/m3, accounting for 
89.8% of total element mass while trace elements (Cr, Co, Cu, Mn, Ni, V 

Fig. 2. Time series of hourly data of gaseous pollutants (PM2.5, O3, NO2, CO, SO2) and meteorological parameters (WS, WD, RH, T) were measured at Atmospheric 
Environment Super Monitoring Station from September 1 to December 22 in 2021.The orange and red dashed lines indicated concentration of 75 and 250 μg/m3, 
respectively. The gray shaded area represented the ten air pollution events that occurred during the observation period. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The hourly average concentrations of ionic species and carbon species during the 
observation period (September 1 to December 22, 2021).  

Species Concentrations (μg/m3) 
Sep. Oct. Nov. Dec. 

OC 3.3 ± 1.9 4.3 ± 2.4 5.3 ± 3.2 5.8 ± 3.5 
EC 1.0 ± 0.7 1.5 ± 1.1 1.8 ± 1.2 2.1 ± 1.3 
SO2-

4 5.9 ± 3.9 7.0 ± 4.8 9.1 ± 7.0 7.1 ± 5.9 
NO-

3 5.4 ± 5.2 16.9 ± 15.6 15.6 ± 13.7 16.8 ± 15.6 
NH+

4 7.1 ± 3.2 9.4 ± 5.5 10.7 ± 7.0 11.4 ± 8.4 
Cl- 1.2 ± 1.7 1.9 ± 2.0 2.7 ± 3.2 2.0 ± 1.7 
K+ 0.2 ± 0.2 0.4 ± 0.2 0.5 ± 0.9 0.4 ± 0.3 
Na+ 0.2 ± 0.2 0.3 ± 0.2 0.3 ± 0.5 0.3 ± 0.4 
Mg2+ 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.8 0.1 ± 0.1 
NO-

2 0.3 ± 0.2 0.3 ± 0.2 0.6 ± 1.9 0.5 ± 0.4 
Ca2+ 0.4 ± 0.2 0.6 ± 0.4 0.8 ± 0.8 0.7 ± 0.5 
F- 0.1 0.1 0.4 0.7  

Table 2 
The hourly average concentrations of elemental composition of PM2.5 
(September 1 to December 22, 2021).  

Species Concentrations (ng/m3) 
Sep. Oct. Nov. Dec. 

Al 59.4 ± 118.5 116.1 ± 171.9 200.7 ± 272.2 188.3 ± 205.3 
K 230.4 ± 193.2 442.8 ± 319.7 593.1 ± 362.7 655.1 ± 368.2 
Ca 254.6 ± 235.3 562.9 ± 557.1 790.3 ± 684.5 822.4 ± 507.9 
Cr 6.6 ± 5.9 6.6 ± 6.1 6.3 ± 5.4 7.6 ± 9.1 
Mn 18.2 ± 13.5 29.1 ± 20.5 37.7 ± 25.3 40.1 ± 24.5 
Fe 307.5 ± 187.4 480.3 ± 291.8 598.6 ± 347.5 629.0 ± 314.5 
Cu 1.9 ± 3.8 3.1 ± 4.3 3.7 ± 5.3 3.8 ± 5.8 
Zn 93.3 ± 117.7 128.9 ± 115.6 193.0 ± 198.0 168.2 ± 140.8 
Co 1.0 ± 0.7 1.0 ± 0.8 1.1 ± 0.8 1.1 ± 1.0 
Ni 1.3 ± 1.5 1.4 ± 1.5 1.6 ± 1.5 1.6 ± 3.4 
V 3.8 ± 2.9 3.9 ± 3.4 4.0 ± 3.3 4.0 ± 3.3  
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and Zn) accounted for only 10.2%. In winter, anthropogenic emissions 
sources such as biomass burning, coal combustion, and other human 
activities increased (Tian et al., 2015). Additionally, the mixed layer 
height was low and relatively stable in winter, which inhibited both the 
vertical and horizontal diffusion of the air pollutants, resulting in 
pollution accumulation. All these reasons led to the highest concentra-
tions of trace elements occurring in December. 

3.2. Evaluation of model output results 

A total of 1582 and 678 hourly data were used for the RF model 
training and testing, respectively (Text S1). The scatter plot (Figure S3) 
showed the measured values of the PM2.5 concentrations and the pre-
dicted values based on the RF model for the training set (Figure S3a) and 
testing set (Figure S3b). The predicted and measured values were in 
good agreement on the training set, with R2 of 0.99, RMSE and MAE of 
3.4 μg/m3 and 2.1 μg/m3, respectively. A fairly satisfactory accuracy on 
the testing set was achieved, with R2 of 0.94, RMSE and MAE of 9.4 μg/ 
m3 and 5.7 μg/m3, respectively. 

Permutation importance and feature importance built into the RF 
model were used to assess the effect of variables on PM2.5 concentrations 
during the observation period. As shown in Figure S4, in terms of per-
mutation importance, NH+

4 had the greatest influence on the model 
prediction results with a weight of 0.28, followed by NO-

3 and K, 
together with the following EC, OC, Al, etc. The results showed that the 
secondary inorganic aerosols and heavy metals may be the main factors 
causing high concentrations of PM2.5, which was generally consistent 
with the previous studies (Gao et al., 2018; Ming et al., 2017). 

3.3. Sensitivity of SIA to PM2.5 during the observation period 

In our study, SIA accounted for up to 62.5% of the total PM2.5 mass 
concentrations during the whole observation. Therefore, it is of great 
significance to explore the highly nonlinear relationship between SIA 
and PM2.5. In this work, RF-PDP method was used to evaluate the syn-
ergistic effects of SIA on PM2.5 by sensitivity analysis of two driving 
factors. The results of sensitivity analysis (NO−

3 -NH+
4 , SO2−

4 -NO−
3 , 

NH+
4 -SO2−

4 ) by RF-PDP (Fig. 3) reflected the average trend of the syn-
ergistic effects of two driving factors on PM2.5. 

According to the RF-PDP (Fig. 3a) results, the increase of NH+
4 con-

centration had a stronger effect on PM2.5 when NO-
3 was below about 

33.5 μg/m3, while the phenomenon was more significant when NO-
3 was 

above about 33.5 μg/m3. The synergistic effect of NO-
3 and NH+

4 can 
contribute to PM2.5 (15–60 μg/m3) when their concentrations were 
higher than about 33.5 μg/m3 and 17.9 μg/m3, respectively. The results 
showed that NH+

4 had a greater impact on the formation of PM2.5. When 

the NO-
3 concentration was lower than about 8.5 μg/m3, the PM2.5 was 

determined by SO2-
4 , and with the increase of the SO2-

4 concentration, the 
PM2.5 concentration changed from 42.5 to 47.5 μg/m3 (Fig. 3b). How-
ever, when the NO-

3 concentration was higher than 8.5 μg/m3, the 
concentration of PM2.5 was completely determined by NO-

3. Overall, the 
sensitivity of PM2.5 to NO-

3 was higher than SO2-
4 . Several studies have 

confirmed that NO-
3 concentrations have generally surpassed SO2-

4 in the 
North China Plain (NCP) (Wang et al., 2019; Xu et al., 2019). According 
to Fig. 3c, the concentration of PM2.5 was basically determined by NH+

4 

while SO2-
4 had little effect on the concentration of PM2.5. 

The results indicated that the formation of PM2.5 was governed by 
the synergistic effect of SIA during the observation periods. Gaseous 
precursors in the atmosphere transform from gas to particles through 
atmospheric chemical reactions, thus generating secondary particles 
such as sulfate and nitrate, which constitute chemical components of 
PM2.5 (Zhang et al., 2012). In addition, according to the RF-PDP results, 
the sensitivity order of PM2.5 to SIA was NH+

4 ＞NO-
3＞SO2-

4 and the 
conclusion was consistent with the result of permutation importance in 
Section 3.2 and previous study (Twigg et al., 2015). 

3.4. Contributions of various variables in ten pollution events 

The contributions of each variable in AP1-3 and AP4-10 were shown 
in Figure S5 and Fig. 4, respectively. Among the ten APs, the average 
contribution of NH+

4 ranked first, ranging from 19.9 to 65.4 μg/m3. In 
contrast, the average contribution of NO-

3 (0.4–12.8 μg/m3) ranked in 
the top 5 except the 10th air pollution event. The results suggested that 
NH+

4 and NO-
3 were the prominent factors causing PM2.5 pollution. In 

addition, K, EC and OC were the other main drivers with average con-
tributions of 8.7 ± 2.7 μg/m3, 3.6 ± 5.8 μg/m3 and 2.5 ± 2.0 μg/m3, 
respectively. 

NH+
4 is formed by the reaction of ammonia (NH3) in the atmosphere 

with acidic compounds such as sulfuric acid and nitric acid (Griffith 
et al., 2015). It was the most important factor leading to air pollution 
events with an average contribution of 37.2 ± 23.5 μg/m3. 15N-Stable 
Isotope was used to confirm that severe haze was mainly caused by fossil 
fuel combustion-related emissions in the Beijing area (Pan et al., 2016a). 
Zibo is a famous industrial city in Shandong Province, with a GDP of 
367.4 billion in 2020. Among them, the total output value of the primary 
industry (agriculture, forestry, animal husbandry and fishery) was 15.7 
billion, accounting for only 4.3% of the GDP. However, the total output 
value of the secondary industry (manufacturing, electricity, heat, gas, 
etc.) was 177.7 billion, accounting for 48.5% of the GDP, which was the 
highest percentage among all cities in Shandong Province. The growth 
rate of industrial investment was 13.8%, and the export of petrochem-
ical products was 892.8 million. Energy consumption was 32,277,100 

Fig. 3. Synergistic effects of SIA NH+
4 (, NO−

3 , SO2−
4 ) on PM2.5 concentration during the whole online observation period (from September 1 to December 22, 2021). 

The horizontal and vertical coordinates indicated the concentrations of NO−
3 , SO2−

4 , and NH+
4 (μg/m3) and color bar indicated the concentration of PM2.5. (a) 

NO−
3 -NH+

4 ; (b)NO−
3 -SO2−

4 ; (c) SO2−
4 -NH+

4 . 
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Fig. 4. Shapley values were calculated using Shapley 
Additive Explanation algorithm based on the 
Random Forest model. Time series of all variables’ 
Shapley values during the seven APs (Figure S5 for 
AP1-3) were shown in picture a, c, e, g, i, k, and m, 
and the mean absolute value of each variable’s 
Shapley values (| Shapley | values) were shown in the 
right box plots b, d, f, h, j, l, and n (the top 10 vari-
ables). Both ends are error bars, and the inner box are 
the lower quartile, mean values (circular), median 
values (Weagle et al.), and upper quartile from left to 
right, respectively.   
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tons of standard coal, of which coal fuel and fuel oil accounted for 78.5% 
(Shandong Statistical Yearbook, 2021). Therefore, the ten air pollution 
events were mainly caused by fossil fuel combustion emissions rather 
than agriculture. K is often considered as an indicator of biomass 
burning (Chantara et al., 2019; Rahman et al., 2020; Tao et al., 2014; 
Zhang et al., 2020; Zhang et al., 2015). Coal combustion, biomass 
combustion and vehicle exhaust are often considered to be the main 
sources of OC and EC (Cao et al., 2005; Cheng et al., 2013; Gao et al., 
2018). 

The highest value of PM2.5 concentration (275 μg/m3) was observed 
at 20:00 on November 20, when the WS, RH, NO2 and SO2 were 1.6 m/s, 
90%, 70 μg/m3 and 17 μg/m3, respectively. High humidity, low wind 
speed, and high concentrations of precursors are often the main causes 
of high concentrations of PM2.5 (Sun et al., 2013; Tai et al., 2010; Xu 
et al., 2011). Details of some variables were presented in Fig. 5. 

3.5. Mechanisms of the formation of nitrate 

In recent years, the proportion of NO-
3 mass concentration has 

increased significantly (Pan et al., 2016b; Sun et al., 2015; Teng et al., 
2017; Zhang et al., 2013) and it has become the main component of 
PM2.5. Previous studies have confirmed that SIA accounted for about 
30%-60% of the total mass concentration of PM2.5 in the North China 
Plain (NCP) with a large population and a high degree of industriali-
zation (Huang et al., 2014; Tao et al., 2017; Zheng et al., 2015b). Similar 
to the results of previous studies, SIA accounted for 62.5% of the total 
PM2.5 mass concentration in our study, with NO-

3 ranking first (27.6%). 
The observation period was divided into daytime and nighttime based 
on sunrise and sunset schedules (https://richurimo.bmcx.com) to 
explore the effects of gaseous precursors and meteorological conditions 
(Wang et al., 2009) on NO-

3. 
As shown in Fig. 6, the higher NO2 and O3 concentrations and higher 

relative humidity contributed positively to NO-
3 during the daytime and 

nighttime. NO2 is oxidized by OH generated by photochemistry to form 
gaseous nitric acid, which then reacts with alkaline substances (pri-
marily NH3) on the surface of atmospheric particles to form particulate 
NO-

3(Calvert and Stockwell, 1983; Guo et al., 2016) during the daytime. 
A recent study (Fu et al., 2020) indicated that the high production of 
photochemical oxidants O3 and OH accelerated the formation of nitrate 
in the NCP. At nighttime, the conversion of NO2 was significantly 
accelerated when the O3 concentration was above 60 μg/m3 (Figure S6a, 
Fig. 6). NO2 is oxidized to NO3⋅, which reacts with NO2 to form N2O5. 

N2O5 undergoes a non-homogeneous hydrolysis reaction at the particle 
surface to form NO-

3 (Pathak et al., 2011; Pathak et al., 2009). A small 
quantity of NO3⋅ can also react directly in a non-homogeneous manner 
to form NO-

3 (Hallquist et al., 1999). 
Temperature and humidity are also important drivers of NO-

3 con-
centration variation. At nighttime, the higher humidity (Figure S6b, 
Fig. 6) contributed more to NO-

3 formation, which was due to moisture 
promoting the hydrolysis of N2O5 to NO-

3 (Liu et al., 2020; Wang et al., 
2017; Wu et al., 2018). The concentration of NO-

3 decreased with the 
increasing temperature (Figure S7). At noontime (Figure S7, 11:00 ~ 
12:00), the concentration of NO-

3 increased because high OH concen-
tration and strong photochemical activity promoted the conversion of 
NO2 to NO-

3. A recent study reported that OH played an important role in 
pollution in Beijing, with midday OH concentrations reaching to 2.4 ×
106 cm− 3, almost an order of magnitude higher than that predicted by 
global or regional models in the NCP (Fu et al., 2020; Lelieveld et al., 
2016; Tan et al., 2018; Zheng et al., 2015b). However, the concentration 
decreased after 12:00, probably due to the decomposition of gaseous 
nitric acid caused by higher temperature. Fig. 7 presented the decision 
process of the model from the base value to the predicted value and the 
specific contribution of each variable to NO-

3. It can be seen from the 
figure that O3 contributed the most to NO-

3 because O3 acted as a 
photochemical oxidant promoted the gas-phase reaction of NO2 and OH 
to form NO-

3. 

4. Conclusions 

During the pollution period, the average PM2.5 concentration was 
111.9 μg/m3 in Zibo, far exceeding the air quality standard in China (35 
μg/m3, GB 3095–2012). 

The RF model can accurately predict the concentration of PM2.5, with 
R2 of 0.94, RMSE and MAE of 9.4 μg/m3 and 5.7 μg/m3, respectively. A 
preliminary qualitative analysis of the various drivers influencing PM2.5 
concentrations by Permutation importance showed that NH+

4 had the 
highest weight, followed by NO-

3 and K, and then EC, OC, Al, etc. 
The results of PDP showed that the order of the sensitivity of PM2.5 

was NH+
4 > NO-

3 > SO2-
4 . In addition, SO2-

4 had a strong influence on 
PM2.5 concentrations when NO-

3 concentration was less than 8.5 μg/m3. 
When the concentration of NO-

3 was between 8.5 μg/m3 and 33.5 μg/m3, 
NH+

4 was the primary driver to influence PM2.5 concentrations. How-
ever, when NH+

4 was greater than about 17.9 μg/m3 and NO-
3 was 

greater than 33.5 μg/m3, both of the two species together promoted 

Fig. 5. Local explanations of some major variables based on the Random Forest models on PM2.5 during air pollution events (A portion of the variables). (a) The 
heatmap plot of the major variables during the whole pollution period. The f(x) value represents the sum of the SHAP values of all the features of each sample (the 
sum of the sample dimension SHAP values), indicating the degree of deviation from the expected value. The x-axis is the sample sequence. The left side of the y-axis is 
the feature name and the right side represents the sum of the SHAP values of the feature (the sum of the feature dimension SHAP values). The red and blue stripes 
represent the SHAP value size of each feature for each data sample. (b) Feature density scatter plot (bee swarm plot) of the SHAP values for PM2.5. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. SHAP dependence plot of some main factors for NO-
3 during day and night. The larger the absolute value of Shapley values, the greater the positive or 

negative contributions (impact) of the features to the NO-
3. 

Fig. 7. Local interpretation based on the Random Forest model. (a) SHAP decision plot for NO-
3 during the daytime. The highlighted parts (dotted line) are 

11:00–12:00 am during the pollution period. The upper color bar in the figure represents the predicted value of the model, the middle gray vertical line is the 
expected value of the model, and the colored lines indicate that the output value of each feature is higher or lower than the expected value of the model. Starting at 
the bottom of the graph, the colored lines represent the accumulation of Shapley values from the base value to the predicted value of the final output of the model at 
the top of the graph. (b) Enlarged view of the one of the highlighted parts (11:00–12:00, October 26). The values next to the colored line represent the measured 
value of the variables. (c) SHAP waterfall plot shows the contribution of each variable to the result and the model predicted value is 32.56. 
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PM2.5 generation (~15–60 μg/m3). NH+
4 contributed 19.9–65.4 μg/m3 

during the ten air pollution events and was the most influential driver of 
PM2.5 concentration increase. K, NO-

3, EC and OC were the other main 
drivers, contributing PM2.5 concentrations of 8.7 ± 2.7 μg/m3, 6.8 ±
7.5 μg/m3, 3.6 ± 5.8 μg/m3, and 2.5 ± 2.0 μg/m3, respectively. Fossil 
fuel combustion and biomass combustion were mainly the factors that 
contributed to the air pollution events in the region. 

NO-
3 was the most abundant chemical component in PM2.5, with an 

average concentration of 13.1 μg/m3, accounting for 27.6% of the total 
mass concentration of PM2.5. O3 played an important role in the pro-
duction of nitrate. Lower temperature and higher humidity were the 
other two drivers that promoted the formation of nitrate. 

This work qualitatively analyzed the key drivers influencing air 
pollution, and then characterized the contribution of each driver. Here, 
we first used decision plot to map the decision process of the RF model, 
which showed how the model made decisions at specific points in time 
as well as to see the specific contributions of variables to air pollution. 
This study may provide a frame for data-driven analysis based on 
interpretable algorithms for air pollution prevention and control. 
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