
1.  Introduction
Iron (Fe), an essential micronutrient for all the living organisms, plays important roles in photosynthesis, respira-
tion and nitrogen fixation of marine phytoplankton (Moore et al., 2013). Although it is one of the most abundant 
elements in the crust, concentration of dissolved Fe in oceanic water is very low, limiting primary productiv-
ity and affecting phytoplankton ecosystem structures in many open oceans (Boyd & Ellwood,  2010; Jickells 
et al., 2005; Tagliabue et al., 2017). In high nutrient low chlorophyll (HNLC) regions (e.g., Southern Ocean, 
subarctic North Pacific and east tropical Pacific) which cover around 30% of global oceans, Fe supply directly 
limits or colimits photosynthesis and thus primary production (Jickells et al., 2014). Moreover, Fe supply limits 
or colimits microbial nitrogen fixation and thus also affects primary production over vast tropical nutrient-poor 
regions (e.g., tropical Pacific, South Atlantic, and Indian Ocean) (Jickells et al., 2014). There are evidence that 
increased supply of soluble Fe to some oceanic regions would increase primary productivity (Boyd et al., 2007; 
Tang et al., 2021), having important implications for CO2 uptake and climate (Jickells et al., 2005). It has been 
proposed that increase in dust and thus Fe deposition during the last glacial maximum caused increase in carbon 
export to deep ocean and decrease in atmospheric CO2 (Martin, 1990).

Major external sources of Fe in surface oceans include aerosol deposition, riverine input, continental margins, 
hydrothermal activities and glacial sediments, and aerosol deposition is a major Fe source for open oceans (Con-
way & John, 2014; Jickells et al., 2005; Tagliabue et al., 2017). In addition, aerosol Fe (as well as other transition 
metals such as Cu and Mn) also plays important roles in chemical reactivity of aerosol particles (Alexander 
et al., 2009; Martin & Good, 1991) and their health effects (Daellenbach et al., 2020; Fang et al., 2017). However, 
a large fraction of aerosol Fe may not be bioavailable. Fe availability is in fact poorly defined and understood, and 
soluble Fe has been widely used as a proxy for bioavailable Fe (Baker & Croot, 2010; Meskhidze et al., 2019). 
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Desert dust was conventionally thought to be the major source for soluble aerosol Fe; however, a number of field 
measurements (Mahowald et al., 2018; Sholkovitz et al., 2012) found that Fe fractional solubility (defined as the 
ratio of soluble Fe to total Fe, often abbreviated as Fe solubility) of ambient aerosol particles was significantly 
higher than fresh desert dust (usually <0.5%) (Ito et al., 2021) and showed large spatial and temporal variability.

Aerosol Fe solubility was frequently observed to increase with decrease in total aerosol Fe (Baker & Jickells, 2006; 
Sholkovitz et al., 2012), and several mechanisms have been proposed to explain the observed variability of aero-
sol Fe solubility (Baker et al., 2021; Ito et al., 2019; Mahowald et al., 2018; Meskhidze et al., 2003). One mech-
anism is physical sorting (Baker & Jickells, 2006), that is, preferential deposition of coarser dust particles with 
lower Fe solubility leads to increase in relative contribution of finer particles with higher Fe solubility, though a 
later study (Shi, Woodhouse, et al., 2011) suggested that this effect was small. Atmospheric processing, including 
proton-promoted, ligand-promoted and reductive dissolution, could significantly increase aerosol Fe solubility, 
as suggested by laboratory (Chen & Grassian, 2013; Shi, Bonneville, et al., 2011; Wang et al., 2018), field (Li 
et al., 2017; Liu et al., 2021; Shi et al., 2020), and modeling work (Ito & Shi, 2016; Luo et al., 2005; Meskhidze 
et al., 2003; Myriokefalitakis et al., 2015; Scanza et al., 2018; Solmon et al., 2009). In addition, anthropogenic 
and pyrogenic aerosol Fe with higher solubility has also been proposed to explain the higher Fe solubility of am-
bient aerosol particles (when compared to fresh desert dust) (Chuang et al., 2005; Ito, 2015; Ito et al., 2019; Luo 
et al., 2008; Myriokefalitakis et al., 2015; Schroth et al., 2009; Sholkovitz et al., 2009). Despite many previous 
studies, it remains difficult to quantitatively explain and predict variability of Fe solubility of ambient aerosols, 
and contrasting results were also reported (for example, with respect to the effects of atmospheric processing) 
(Mahowald et al., 2018; Meskhidze et al., 2019). In fact, currently one major uncertainty in estimating deposi-
tion fluxes of soluble aerosol Fe to surface oceans stems from uncertainties in aerosol Fe solubility (Mahowald 
et al., 2018; Myriokefalitakis et al., 2018).

North Pacific is a major HNLC region where primary productivity is limited by Fe. The west part of North Pacific 
is affected by aerosol Fe from a myriad of sources in Asia, including desert dust, biomass burning, and anthropo-
genic emissions, providing a good place to investigate variability and controlling factors of aerosol Fe solubility. 
To further understand abundance and fractional solubility of aerosol Fe in this region, a field campaign was con-
ducted in November-December 2019 at a suburban site in Qingdao, a coastal city in northern China. Compared to 
previous studies carried out over and around Northwest Pacific (Chuang et al., 2005; Fu, Shang, et al., 2014; Hsu 
et al., 2005, 2010; Liu et al., 2021; Ooki et al., 2009; Shi et al., 2020; Takahashi et al., 2013; Zhang et al., 2013; 
Zhu et al., 2020), our work aimed to provide further insights in the following three aspects: (a) fine (<1 μm) and 
coarse (>1 μm) particles were simultaneously collected. Fine and coarse particles exhibit large difference in 
sources and compositions (Seinfeld & Pandis, 2016), and therefore Fe solubility and its controlling factors may 
differ significantly between coarse and fine particles; (b) a number of elements and soluble ions, in addition to 
total and soluble Fe, were also measured, providing constrains to understand factors which determined aerosol 
Fe solubility; (c) three representative weather conditions, including clean, haze and dust days, were encountered 
during the campaign, giving the opportunities to explore and understand aerosol Fe solubility under distinctively 
different conditions.

2.  Methodology
2.1.  Sample Collection

Aerosol particles were collected at a rural/suburban site in Qingdao which is a coastal city in northern China 
between 07 November and 19 December 2019, except 23 November, 01 December, and 16 December due to 
technical failure. Qingdao has a total population of around 11 million and is affected by Asian outflow of desert 
dust and anthropogenic pollution. Aerosol sampling was conducted on the roof of a 5-floor building (36.34°N, 
120.67°E) which is ∼20 m above the ground level and ∼1.3 km from the coastline. The sampling site is sur-
rounded by a number of residence/office buildings, villages and farmlands, and two expressways are located to 
its west (∼900 m) and north (∼1,200 m) (Cui et al., 2021). A two-stage medium volume aerosol sampler (TH-
150C, Tianhong Co.), which has a sampling flow rate of 100 L/min, was used to collect fine (<1 μm) and coarse 
(>1 μm) particles simultaneously, in an attempt to separate natural and anthropogenic aerosol particles to some 
extent (Seinfeld & Pandis, 2016). Aerosol sampling was started at 08:00 on each day and stopped at 07:30 on the 
next day, and in total 141 m3 air was sampled in 23.5 hr. After the sampling was stopped, filters were taken out 
from the aerosol sampler, placed into sealed plastic Petri dishes and stored frozen at −20°C in a fridge for later 
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analysis at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Filters before and after aerosol 
collection were weighted using a high-precision balance (with a mass resolution of 1 μg) in a RH-controlled room 
(RH<50%) at around 20°C.

Whatman 41 (W41) cellulose filters were used in our work to collect aerosol particles due to its low background 
and high collection efficiency, as recommended by previous work (Morton et al., 2013). W41 cellulose filters, 
which were commercially available as rectangular sheets (254 × 203 mm), were cut in our lab to circular (88 mm 
in diameter) and annular filters (od: 74 mm; id: 21 mm) which were used to collected fine and coarse particles, 
respectively. Circular and annular filters were then pretreated using a protocol similar to that recommended by 
previous work (Morton et al., 2013) to minimize the background: (a) filters were soaked in 0.5 mol/L HCl for 
24 hr and then soaked in deionized water (>18.2 MΩ cm−1) for 24 hr; (b) they were rinsed three times in deion-
ized water, and after the third rinsing the pH of the water bath reached 5.4–5.6; (c) these filters were dried in an 
oven at 50°C, individually placed into sealed plastic Petri dishes, and stored at −20°C in a fridge.

In addition, all the labwares in contact with or used to extract/digest filters were soaked in 0.5 mol/L HCl for 
24 hr, rinsed three times with deionized water, and dried at 40°C in an oven for 12 hr. In our work, 36%–38% HCl 
(GR grade) was provided by Guangzhou Chemical Reagent Factory, and it was also used to prepare 0.5 mol/L 
HCl; unless otherwise stated, HNO3 (Optima Grade, Fisher Scientific) was used as received (67%–70%) or dilut-
ed to 1% HNO3 solution.

Meteorological (temperature, relative humidity, and wind speed and direction) and air quality (mass concentra-
tions of PM2.5 and PM10) data were obtained from an adjacent air quality monitoring station operated by Qingdao 
Eco-environment Monitoring Center. In addition, black carbon (BC) was measured using an aethalometer (AE33, 
Magee Scientific Co.).

2.2.  Sample Analysis

2.2.1.  Measurements of Soluble Ions and Metals

Each particle-loaded filter was divided into two equivalent halves using a ceramic knife. The first half was extract-
ed in 20 mL deionized water for 2 hr, continuously stirred using an orbital shaker (300 r/min). The extraction was 
immediately filtered through a 0.22 μm PTFE membrane syringe filter and then divided to two parts. The first 
part (∼10 mL) was analyzed using ion chromatography (761 Compact IC, Metrohm) to measure concentrations 
of soluble anions (NO3

−, SO4
2−, Cl−, NO2

− and oxalate) and cations (NH4
+, Na+, K+, Ca2+, and Mg2+) (Fu, Wang, 

et al., 2014; Fu et al., 2015). Detection limits were estimated to be 10–20 μg/L in the solution and 3–6 ng/m3 in 
the air for soluble ions. Background levels of blank filters were around or below 10–20, 30–50, and 70–80 ng/m3 
for NO3

−, Cl−, and NH4
+, and below detection limits for the other seven ions. We found that background levels of 

NO3
−, Cl−, and NH4

+ were significantly lower for freshly prepared filters and would increase during storage, as 
cellulose filters could adsorb HCl, HNO3, and NH3 from ambient air (Morton et al., 2013).

The second part of the solution (10 mL) was acidified with 147 μL HNO3 (67%–70%) to contain 1% HNO3 and 
then analyzed using inductively coupled plasma mass spectrometry (ICP-MS, iCAP Q, Thermo Fisher Scientific) 
to determine concentrations of metals. In total, 14 metals were analyzed, and inner standards used were Sc (for 
Al), Ge (for Cr, Cu, Fe, Mn, Ni, V, and Zn), Y (for As and Se), In (for Cd), and Bi (for Ba, Pb, and Sb). Three 
measurements were carried out for each solution (both soluble and total metals) to report the average value. De-
tection limits in the solution were estimated to be around 1 μg/L for Fe, Ba, and Zn and around 0.1 μg/L for other 
metals, corresponding to 0.3 and 0.03 ng/m3 in the air. Soluble metals were always below their detection limits 
for blank filters. As summarized by Meskhidze et al. (2019), a variety of leaching solutions have been used to 
extract soluble aerosol Fe, likely leading to considerable difference in results obtained, and the community is yet 
to reach consensuses in leaching methods. We chose to use deionized water which was widely used in previous 
work to extract soluble aerosol Fe.

2.2.2.  Measurements of Total Metals

Teflon jars used in digestion were washed using the following procedure to minimize the background: (a) each 
Teflon jar was first washed four times with deionized water and dried at 100°C in an oven; (b) it was filled with 
2 mL deionized water and 4 mL HCl (36%–38%), and was then kept at 180°C in a microwave digestion instru-
ment for 1 hr (it should be mentioned that Teflon jars were always tightly capped during microwave digestion); 
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(c) the Teflon jar was washed three times with deionized water after residual acids were removed, filled with 
2 mL deionized water and 4 mL 65%–68% HNO3 (GR grade, Guangzhou Chemical Reagent Factory), and then 
kept at 180°C in a microwave digestion instrument for 1 hr; (d) it was washed three times with deionized water 
after residual acids were removed, filled with 1 mL deionized water and 3 mL HNO3 (67%–70%), and then kept at 
180°C in a microwave digestion system for 1 hr; (e) finally, the Teflon jar was washed three times with deionized 
water after residual acids were removed, and then dried at 100°C in an oven.

To digest the second half of a particle-loaded filter, it was shredded using ceramic scissors and transferred into a 
pre-cleaned Teflon jar. It should be mentioned that in some cases only one quarters of a filter was used in diges-
tion. The following procedure was adopted in our work to digest the filter sample: (a) The Teflon jar was filled 
with 2 mL HNO3 (67%–70%) and 2.5 mL H2O2 (31%, G5, ICPMS Pure grade, Aoban Technology Company 
Limited, Shanghai, China), and then kept at room temperature in a fume hood for 24 hr; (b) after that, it was filled 
with 3 mL HNO3 (67%–70%) and 1 mL HF (47%–51%, Optima grade, Fisher Scientific) and kept at 170°C in 
a microwave digestion instrument for 2 hr (please note that the filter/HNO3/H2O2 mixture was not dried before 
HNO3 and HF was added into the Teflon jar); (c) the Teflon jar was transferred onto a heating plate and heated 
at 140°C for ∼4 hr to evaporate residual acids; (d) after it was cooled down to room temperature, the Teflon 
jar was filled with 20 mL 1% HNO3, and the solution was filtered through a 0.22 μm PTFE membrane syringe 
filter. The filtration was analyzed by ICP-MS to determine total metal concentrations. Two certificated reference 
materials (GBW07454, provided by Chinese Academy of Geological Sciences; GSB07-3272-2015, provided by 
Institute for Environmental Reference Materials, Ministry of Environmental Protection) were used in our work to 
check digestion recoveries, which were found to be 104%–114% for Fe, 115%–119% for Al, 83%–131% for Pb, 
100%–110% for V, and 83%–95% for Ni. In our work, background levels in blank filter were found to be <5, <20, 
<5, and <10 ng/m3 for total Fe, Al, Ba and Zn, 1–2 ng/m3 for total Cr and Cu, and <0.5 ng/m3 for other metals.

2.3.  Aerosol Acidity Calculation

The measured concentrations of water soluble inorganic ions and daily averaged temperature and RH (relative hu-
midity) were used as input in the aerosol thermodynamic model ISORROPIA-II (Fountoukis & Nenes, 2007) to 
calculate aerosol liquid water content and pH for fine and coarse particles. We did not take into account organics, 
and their influence on aerosol liquid water content and pH was estimated to be small in China (Liu et al., 2017). 
The model was run in the forward mode and aerosol particles were assumed to be metastable, as previous work 
(Guo et al., 2015; Hennigan et al., 2015) found that the forward mode gave better estimation of aerosol pH than 
the reverse mode when only aerosol composition data was available. In our calculations NH3 and HNO3 in the gas 
phase were implicitly assumed to be negligible when compared to NH4

+ and NO3
− in aerosol particles, and this 

would lead to uncertainties in calculated aerosol acidity. The same method was also used in a recent study (Wang 
et al., 2021) to calculate aerosol pH for PM2.5 samples in Shanghai. We also tried to use the iteration process 
(Fang et al., 2017) to calculate aerosol pH, but the results failed to converge.

3.  Results
3.1.  Overview of Meteorological Conditions and Aerosol Pollution

Figure 1 shows time series of wind speed and direction, temperature and RH, and mass concentrations of PM2.5 
and PM10 during the campaign. Wind mainly came from northwest, and its speeds typically ranged from 2 to 
6 m/s (Figure S1); when wind came from other directions (mainly south), its speeds were usually <4 m/s. Over 
the entire campaign temperature was in the range of −7°C to 21°C with a median value of 5°C, and RH was in 
the range of 34%–94% with a median value of 66%.

Three representative weather conditions, including dust, haze and clean days, were identified based on mass 
concentrations of PM2.5 and PM10. Three days (18–20 November) were classified as dust days: wind mainly came 
from northwest and was usually above 2 m/s, PM10 exceeded 100 μg/m3, and mass concentration ratios of PM10 to 
PM2.5 reached 3. Four days (07–10 December) were classified as haze days during which air was stagnant (wind 
speed <2 m/s) and average RH was >70%, accomplished by significant increase in BC and secondary inorganic 
species (Figure S2). During the seven clean days (22–25 November and 15–17 December) mass concentrations of 
PM2.5 and PM10 were both below 50 μg/m3. In addition, no obvious fogs occurred during our campaign.
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3.2.  Total and Soluble Aerosol Iron

3.2.1.  Total Aerosol Fe

Figure 2 displays time series of mass concentrations of total Fe, mass fractions of total Fe (normalized to particle 
mass concentrations), mass concentrations of soluble Fe, and Fe solubility for fine and coarse particles. As shown 

Figure 1.  Time series of (a) wind speed and direction, (b) temperature and RH, and (c) mass concentrations of PM2.5 and PM10.

Figure 2.  Time series of (a) total Fe, (b) mass fraction of Fe, (c) soluble Fe, and (d) Fe fractional solubility in fine and coarse particles.
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in Table 1, mass concentrations of aerosol Fe were in the range of 195–2,193 ng/m3 for coarse particles (average: 
798 ± 466 ng/m3; median: 780 ng/m3) and 104–2,301 ng/m3 for fine particles (average: 801 ± 534 ng/m3; median: 
654 ng/m3). No significant difference in aerosol Fe concentrations was found between fine and coarse particles 
(paired t-test, P = 0.96, α = 0.05). Figure 3a compares mass concentrations of aerosol Fe under different weather 
conditions. Average mass concentrations of aerosol Fe were determined to be 1,605 ± 538 and 1,601 ± 635 ng/m3 
for coarse and fine particles during dust days, 1,252 ± 367 and 480 ± 160 ng/m3 during haze days, and 285 ± 63 

Fine particles Coarse particles

Range Average Median Range Average Median

Total Fe 104–2,301 801 ± 534 654 195–2,193 798 ± 466 780

fm(Fe) 0.28–12.84 2.40 ± 2.13 2.04 0.48–5.75 2.58 ± 1.31 2.55

Soluble Fe 0.6–41.2 7.3 ± 7.6 5.6 0.6–73.7 7.7 ± 14.5 2.3

fs(Fe) 0.07–5.91 1.29 ± 1.41 0.66 0.11–4.63 0.80 ± 1.03 0.34

Table 1 
Overview of Total Fe (in ng/m3), Mass Fractions of Fe (fm(Fe), in %), Soluble Fe (in ng/m3) and Fe Fractional Solubility 
(fs(Fe), in %) in Fine and Coarse Particles During the Campaign

Figure 3.  Total Fe (a), mass fractions of Fe (b), soluble Fe (c), and Fe solubility (d) in fine and coarse particles under different weather conditions.
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and 329 ± 203 ng/m3 during clean days. This suggests that both dust and anthropogenic emission could substan-
tially increase total Fe concentrations in fine and coarse particles. Total Fe concentrations in total suspended 
particles (TSP) were measured to be 2.2–4.5 μg/m3 during dust days in our work, significantly lower than those 
(median: 15 μg/m3) found during dust episodes in 2013 at the same city (Shi et al., 2020), and the difference was 
due to different intensities of dust events observed in the two studies.

The range, average and median values were determined to be 0.48%–5.75%, 2.58 ± 1.31% and 2.55% for mass 
fractions of total Fe in coarse particles, and 0.28%–12.84%, 2.40 ± 2.13% and 2.04% in fine particles (Table 1). 
There was no significant difference in mass fractions of total Fe between fine and coarse particles (paired t-test, 
P = 0.59, α = 0.05). As shown in Figure 3b, average mass fractions of total Fe were found to be 5.16 ± 4.64% and 
2.99 ± 1.44% for coarse and fine particles during dust days, 1.09 ± 0.27% and 0.60 ± 0.10% during haze days, 
and 1.99 ± 0.73% and 1.65 ± 0.75% during clean days. Mass fractions of aerosol Fe during dust days were similar 
to those (around 3.5% but quite variable) reported for the upper continental crust (Taylor & McLennan, 1995) 
and desert dust in source regions (Cao et al., 2008; Zhang et al., 2014), significantly higher than clean days; in 
addition, during dust days mass fractions of Fe was higher in coarse particles than fine particles, because desert 
dust was mainly present in coarse particles. In contrast, compared to clean days, Fe mass fractions were signifi-
cantly reduced during haze days (especially for fine particles), due to large increase in secondary species during 
haze events.

Total Fe is well correlated with total Al for both fine and coarse particles (Figure 4), suggesting desert dust as 
the major source for aerosol Fe in fine and coarse particles. Median values of Fe/Al mass ratios were found to 
be 1.123 for coarse particles and 0.825 for fine particles. Using the mass ratio of Fe/Al in the upper continental 
crust as the reference (0.435) (McLennan, 2001; Taylor & McLennan, 1995), median values of Fe enrichment 
factors were determined to be 2.6 and 1.9 for coarse and fine particles. It has been suggested that Fe enrichment 
factor of >1.3 implies existence of non-crustal sources for aerosol Fe (Mahowald et al., 2005; Wiersma & David-
son, 1986); as a result, nondust sources were not negligible for aerosol Fe observed in our work.

3.2.2.  Soluble Aerosol Fe

During our campaign, the range and average and median values were found to be 0.6–73.7, 7.7 ± 14.5, and 2.3 ng/
m3 for soluble Fe concentrations in coarse particles, and 0.6–41.2, 7.3 ± 7.6, and 5.6 ng/m3 in fine particles 
(Table 1). The difference in soluble Fe concentrations was not statistically significant between coarse and fine 
particles (paired t-test, P = 0.81, α = 0.05).

Significant difference in soluble Fe concentrations was observed under different weather conditions. As shown in 
Figure 3c, average soluble Fe concentrations were found to be 2.4 ± 1.3 and 6.1 ± 2.8 ng/m3 for coarse and fine 
particles during dust days, 41.2 ± 23.7 and 23.7 ± 12.3 ng/m3 during haze days, and 1.7 ± 1.3 and 6.3 ± 8.1 ng/m3 

Figure 4.  Total Fe versus total Al in fine (a) and coarse (b) particles. Data represented by the three open circles in Figure 4a are excluded from correlation analysis.
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during clean days. Compared to haze days, during dust days total Fe concentrations were higher but soluble Fe 
concentrations were much lower. Such contrast was caused by difference in Fe solubility under the two weather 
conditions, and will be further discussed in Section 3.3.

We further examined correlation between soluble Fe and a few source tracers, including total Al, total Pb, BC and 
nss-K+ (non-sea-salt K+). Mass concentrations of nss-K+ and nss-sulfate (non-sea-salt sulfate) can be calculated 
using Equation 1:

[nss-X] = [X] − 𝛼𝛼X ⋅ [Na+]� (1)

where X is sulfate or K+, [Na+] is the mass concentration of soluble Na+, and αX is equal to 0.252 for sulfate and 
0.036 for K+ (Piel et al., 2006). As shown in Figure 5, soluble Fe was well correlated with total Al, total Pb, BC, 
and nss-K+ for coarse particles, indicating that both desert dust as well as combustion and anthropogenic sources 
contributed to soluble Fe in coarse particles. On the contrary, soluble Fe was well correlated with total Pb, BC, 
and nss-K+ but not with total Al for fine particles, implying that contribution of desert dust to soluble Fe in fine 
particles might be small.

3.3.  Aerosol Fe Solubility

The range, average and median values of Fe solubility were found to be 0.11%–4.63%, 0.80 ± 1.03% and 0.34% 
for coarse particles, and 0.07%–5.91%, 1.29 ± 1.41%, and 0.66% for fine particles. During our campaign Fe sol-
ubility was significantly higher in fine particles than coarse particles (paired t-test, P < 0.05, α = 0.05). Increase 
in Fe solubility with decrease in particle size has been observed at various locations around the globe by previous 
work (Baker et al., 2006b, 2020; Chen & Siefert, 2004; Fang et al., 2017; Gao et al., 2019, 2020; Johansen & 
Hoffmann, 2003; Longo et al., 2016; Ooki et al., 2009; Siefert et al., 1999), despite that different leaching pro-
tocols were employed to extract soluble Fe from collected ambient aerosol particles. Therefore, increase in Fe 
solubility with decrease in particle size may be a universal phenomenon, though one previous study (Buck, Land-
ing, & Resing, 2010) found that Fe solubility did not increase with decreasing particle size for aerosol particles 
collected over the North Atlantic Ocean in June–August 2003.

Size-dependence of aerosol Fe solubility could be caused by two reasons. First of all, dust particles with lower 
Fe solubility are mainly present in coarse particles, while anthropogenic particles with higher Fe solubility are 
enriched in fine particles. In addition, aerosol acidity is typically higher in fine particles than coarse particles 
(Kakavas et al., 2021), and thus enhancement of Fe solubility by acid processing can be more significant for fine 
particles. This is supported by the fact that over the entire campaign calculated pH values were significantly lower 
(paired t-test, P < 0.01, α = 0.05) for fine particles (average: 3.64 ± 0.77; median: 3.68) than coarse particles 
(average: 4.24 ± 1.17; median: 3.99).

A number of previous studies (Baker & Jickells, 2006; Gao et al., 2013; Hsu et al., 2005, 2010; Kumar & Sa-
rin, 2010; Kumar et  al., 2010; Mahowald et  al., 2018; Meskhidze et  al., 2019; Sedwick et  al., 2007; Shelley 
et al., 2018; Sholkovitz et al., 2012; Winton et al., 2015) have revealed the inverse dependence of Fe solubility 
on total aerosol Fe concentration (or mass concentration of dust aerosol), despite that these studies used various 
leaching methods to determine Fe solubility. Several mechanisms, including physical sorting (Baker & Jick-
ells, 2006), anthropogenic and pyrogenic aerosol Fe (Sholkovitz et al., 2009), and chemical processing (Meskh-
idze et al., 2003), can explain the observed inverse dependence, though quantitative understanding has not been 
reached. Similar to these studies, an inverse relation was observed in our work between Fe solubility and total 
Fe concentration (and total Al concentration as well) for fine particles, as shown in Figure 6a; however, such an 
inverse dependence was not observed for coarse particles (Figure 6b). We notice that two previous studies (Oakes, 
Weber, et al., 2012; Paris et al., 2010) also reported no obvious dependence of Fe solubility on total Fe mass 
concentration, and aerosol particles were collected over the West African Sahel (Paris et al., 2010) and in Atlanta, 
Georgia, USA (Oakes, Weber, et al., 2012).

Figure 3d reveals significant difference in Fe solubility for the three representative weather conditions. Average 
Fe solubility was 0.14 ± 0.03% and 0.39 ± 0.17% for coarse and fine particles during dust days, much lower 
than those during clean days (0.61 ± 0.39% and 1.75 ± 1.33% for coarse and fine particles). Fe solubility was 
usually <1% for dust particles collected from topsoil in source regions (Oakes, Ingall, et al., 2012; Paris & Des-
boeufs, 2013; Paris et al., 2011; Shi, Woodhouse, et al., 2011) and dust aerosols collected over the West African 
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Figure 5.  Soluble Fe versus total Al (a), total Pb (c), BC (e), and nss-K+ (g) for fine particles; soluble Fe versus total Al (b), 
total Pb (d), BC (f), and nss-K+ (h) for coarse particles.
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Sahel (Paris et  al.,  2010), very similar to that for aerosol particles collected in our work during dust days at 
Qingdao, implying that Fe solubility was not significantly enhanced when desert dust aerosol was transported 
to Qingdao. This is supported by previous field measurements (Chuang et al., 2005; Fu, Shang, et al., 2014; 
Ooki et al., 2009; Shi et al., 2020). For example, during dust events Fe solubility observed at Jeju Island (Korea) 
was not significantly higher than that observed at Dunhuang (China) which is close to a major desert (Chuang 
et al., 2005); Fe solubility of large mineral dust particles (4.7–11 μm) transported to Hokkaido (northern Japan) 
was determined to be 0.52% (Ooki et al., 2009), very closed to 0.33% for an Asian dust standard. Similarly, aver-
age Fe solubility during dust days was determined to be 0.5 ± 0.1% for PM2.5 samples in Shanghai (a coastal site 
in southeast China) (Fu, Shang, et al., 2014) and 0.27% for TSP in Qingdao (Shi et al., 2020).

Compared to clean days, Fe solubility was substantially enhanced during haze events, being 3.28 ± 1.29% for 
coarse particles and 4.73 ± 0.82% for fine particles on average. Significant increase in Fe solubility during haze 
days, when compared to clear days, was also observed by previous work (Shi et al., 2020; Zhu et al., 2020). This 
phenomenon was usually attributed to either increased contribution of anthropogenic particles with higher Fe 
solubility (Shi et al., 2020) or enhancement of aerosol Fe solubility due to chemical processing in haze days 
(Zhu et al., 2020). However, their contributions cannot be clearly distinguished or quantified yet. The median Fe 

Figure 6.  (a) Fe solubility versus total Fe for fine particles; (b) Fe solubility versus total Fe for coarse particles; (c) Fe solubility versus total Al for fine particles; (d) Fe 
solubility versus total Al for coarse particles.



Journal of Geophysical Research: Atmospheres

ZHANG ET AL.

10.1029/2021JD036070

11 of 18

solubility for TSP was measured to be 5.81% during fog days and 1.75% during haze days in Qingdao by a previ-
ous study (Shi et al., 2020), higher and lower than those observed during haze days in our work.

4.  Discussion
4.1.  Effects of Anthropogenic Emission on Fe Solubility

Many field (Chuang et  al.,  2005; Conway et  al.,  2019; Guieu et  al.,  2005; Sedwick et  al.,  2007; Sholkovitz 
et al., 2012) and modeling studies (Ito, 2013; Ito & Shi, 2016; Ito et al., 2019, 2021; Luo et al., 2008; Mahowald 
et al., 2018) suggested that anthropogenic and combustion Fe would contribute significantly to soluble aerosol Fe 
in many regions and could at least in part explain higher Fe solubility (compared to that for fresh mineral dust) ob-
served at various locations. For example, soluble aerosol Fe was not correlated with sulfate but with BC, indicat-
ing large contribution of combustion emission to observed high levels of aerosol soluble Fe (Chuang et al., 2005); 
in addition, Fe solubility was found to be correlated with Fe/Al, Pb/Al, and Cd/Al (Kumar & Sarin, 2010) and 
V/Al (Sholkovitz et al., 2009), indicating significant impacts of anthropogenic emission on aerosol Fe solubility.

Here we attempted to seek the dependence of measured Fe solubility on the abundance of three tracers, including 
BC which is dominantly emitted by combustion, nss-K+ which is used as a tracer for biomass burning, and Pb 
which is used as a tracer for vehicle exhaust, coal combustion and metallurgical industry (Pant & Harrison, 2012; 
Viana et al., 2008). The molar ratios of nss-K+ and Pb to Al, which are proportional to enrichment factors, were 
used in our work. As shown in Figure 7, Fe solubility was positively correlated with [BC], [nss-K+]/[Al] and [Pb]/
[Al] for fine particles, indicating that anthropogenic and combustion emissions could contribute significantly to 
enhanced Fe solubility of fine particles. Fe solubility was also positively correlated with [BC] and [nss-K+]/[Al] 
for coarse particles, though these correlations were worse than fine particles; nevertheless, it was not significantly 
correlated with [Pb]/[Al]. If we do not include outliers in our analysis, as shown in Figure S7, Fe solubility was 
not correlated with [BC] or [Pb]/[Al] and only weakly correlated with [nss-K+]/[Al] for coarse particles. There-
fore, the contribution of anthropogenic and combustion emissions to enhanced Fe solubility might be minor for 
coarse particles, and the likely reason is that anthropogenic and pyrogenic Fe is mainly presented in fine particles.

Figure 7 further shows that both higher [BC], [nss-K+]/[Al] and [Pb]/[Al] and higher Fe solubility were observed 
on haze days, suggesting that anthropogenic emission of aerosol Fe with higher solubility contributed to observed 
higher Fe solubility during haze days.

4.2.  Effect of Acid Processing on Fe Solubility

It has been suggested that proton-promoted dissolution (i.e., acid processing) could substantially enhance aerosol 
Fe solubility (Baker et al., 2021; Chen & Grassian, 2013; Cwiertny et al., 2008; Ito & Feng, 2010; Li et al., 2017; 
Meskhidze et al., 2003; Scanza et al., 2018; Shi et al., 2012, 2015). Molar ratios of acidic species to total Fe were 
widely used in previous work (Liu et al., 2021; Shi et al., 2020; Zhu et al., 2020) to represent the relative degree 
of acid processing of aerosol Fe, and this method was also adopted in our work. We found that Fe solubility was 
well correlated with (2 × [SO4

2−] + [NO3
−])/[Fe] (Figure 8) as well as [NO3

−]/[Fe] and [SO4
2−]/[Fe] (Figure S3) 

for both fine and coarse particles, indicating that acid processing significantly enhanced Fe solubility in fine and 
coarse particles. It should be noted that in these two figures nss-sulfate, instead of total soluble sulfate, was used. 
As further shown in Figures 8 and S3, correlations between Fe solubility and acidic species (after normalized to 
total Fe) were always better for coarse particles; in contrast, correlations between Fe solubility with combustion 
tracers were always better for fine particles (Section 4.1). It is also apparent from Figure 8 that higher degrees of 
acid processing occurred during haze days (corresponding to higher Fe solubility) and lower degrees of acid pro-
cessing was observed during dust days (corresponding to lower Fe solubility). It is worth mentioning that we only 
have four samples for haze days and three samples for dust days, and larger sample numbers are required to better 
understand the effects of anthropogenic emission and chemical processing on the enhancement of Fe solubility.

Many previous field studies investigated the relationship between Fe solubility and the abundance of acidic 
species, and contrasting results were reported. While Fe solubility was found to increase with acidic species in 
some studies (Kumar et al., 2010; Liu et al., 2021; Shi et al., 2020; Zhu et al., 2020), many other studies (Baker 
et al., 2006a, 2006b; Buck et al., 2006; Buck, Landing, Resing, & Measures, 2010; Chuang et al., 2005; Fu, 
Shang, et al., 2014; Ingall et al., 2018; Kumar & Sarin, 2010) did not observe such relationship. Nevertheless, 



Journal of Geophysical Research: Atmospheres

ZHANG ET AL.

10.1029/2021JD036070

12 of 18

Figure 7.  (a) Fe solubility versus BC concentrations for fine particles; (b) Fe solubility versus BC concentrations for coarse particles; (c) Fe solubility versus [nss-K+]/
[Al] for fine particles; (d) Fe solubility versus [nss-K+]/[Al] for coarse particles; (e) Fe solubility versus [Pb]/[Al] for fine particles; (f) Fe solubility versus [Pb]/[Al] for 
coarse particles. Dust days are represented by solid brown symbols, and haze days are represented by solid black symbols.
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lack of such relationship does not necessarily mean that acid processing did not play an important role, because 
secondary acidic species (mainly sulfate and nitrate) would enhance Fe solubility, while their concentrations 
would decrease with time due to dispersion and deposition (Mahowald et al., 2018). As a result, it is more suitable 
to use relative abundance of acidic species (normalized to total Fe), instead of absolute abundance, to represent 
the degree of acid processing of aerosol Fe, as done in our work and some previous studies (Liu et al., 2021; Shi 
et al., 2020; Zhu et al., 2020). In fact, our work found that correlations of Fe solubility with absolute abundance 
of acidic species (Figures S4 and S5) were significantly worse than those with their relative abundance.

To further examine the impacts of proton-promoted dissolution on aerosol Fe solubility, we calculated aerosol pH 
using ISORROPIA-II, and Figure 9 plots Fe solubility versus calculated aerosol pH for fine and coarse particles. 
When aerosol pH exceeded 4, Fe solubility was <1% for both fine and coarse particles, except one fine particle 
sample. A few previous studies (Fang et al., 2017; Ingall et al., 2018; Longo et al., 2016) also revealed the impor-
tance of aerosol acidity in Fe solubility. For example, increase in transport time led to increase in aerosol acidity 

Figure 8.  Fe solubility versus (2 × [sulfate] + [nitrate])/[Fe]: (a) fine particles; (b) coarse particles. Dust days are represented by solid brown symbols, and haze days 
are represented by solid black symbols.

Figure 9.  Fe solubility versus calculated aerosol pH: (a) fine particles; (b) coarse particles. Dust days are labeled using brown circles, and haze days are labeled with 
black circles.
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and Fe solubility for Saharan dust aerosol (Longo et al., 2016), and increase in aerosol acidity resulted in increase 
in Fe solubility for aerosol particles collected in Atlanta (Georgia, USA) (Fang et al., 2017). In addition, similar 
to what was found in our work, Fe solubility was lower when pH was >4 and significantly higher when pH < 4 
for aerosol particles collected at five different sites over the globe (Ingall et al., 2018)

However, aerosol acidity was not the only factor which determined Fe solubility (Figure 9): when aerosol pH was 
lower than 4, Fe solubility could be either higher or lower than 1%. Figure 9 further reveals the importance of RH 
at higher aerosol acidity (pH < 4): Fe solubility was usually >1% when RH was >60% and <1% when RH was 
<60% for fine particles, although there were some outliers; furthermore, this trend was even more evident for 
coarse particles. In addition, Figure 9 shows that aerosol acidity and RH were both higher on haze days (higher 
Fe solubility) and both lower on dust days (lower Fe solubility).

The importance of RH in aerosol Fe solubility was also suggested by a few previous studies. For example, Zhu 
et al. (2020) collected aerosol particles during winter at four cities in eastern China, and found that Fe solubility 
was low (0.7%–3.8%) at <50% RH even though some samples had high values of (2 × [SO4

2−] + [NO3
−])/[Fe] 

(Zhu et al., 2020) and significantly higher (1.3%–11.4%) at >50% RH. In another study, Shi et al. (2020) found 
that for similar (2 × [SO4

2−] + [NO3
−])/[Fe] values, Fe solubility was much higher during fog days when average 

RH was 85%, compared to haze days. Overall, our work suggested that aerosol acidity and RH (thus aerosol water 
content) both play critical roles in regulating Fe solubility.

4.3.  Effects of Organic Ligands

Laboratory studies (Chen & Grassian, 2013; Paris & Desboeufs, 2013; Wang et al., 2017) showed that the pres-
ence of organic ligands would promote Fe dissolution and thus increase Fe solubility. Figure 10 plots Fe solubility 
versus [oxalate]/[Fe] (the molar ratio of oxalate to Fe) for fine and coarse particles, and oxalate was chosen be-
cause it is likely the most abundant organic ligand in atmospheric aerosols and clouds. As shown in Figure 10, Fe 
solubility was reasonably well correlated with [oxalate]/[Fe] for fine particles, but there was no such correlation 
for coarse particles. This probably indicates that organic ligands may enhance Fe solubility in fine particles to 
some extent, but their effect on Fe solubility was not significant for coarse particles.

A very limited number of field measurements (Buck et al., 2006; Gao et al., 2019; Shi et al., 2020) explored 
the effects of organic ligands on aerosol Fe solubility, and the results appears to be contradictory. Compared to 
aerosol particles collected in the south of 80°N over the Arctic, both Fe solubility and relative contribution of 
carboxylates to total water-soluble ions were higher for aerosol particles collected in the north of 80°N (Gao 
et al., 2019), possibly indicating enhancement of aerosol Fe solubility by organic ligands; however, no obvious 

Figure 10.  Fe solubility versus [oxalate]/[Fe]: (a) fine particles; (b) coarse particles. Dust days are represented by solid brown symbols, and haze days are represented 
by solid black symbols.
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correlation between Fe solubility and oxalate was observed for aerosol particles collected over the northwest 
Pacific (Buck et al., 2006) or aerosol particles collected in Qingdao (Shi et al., 2020). To summarize, it remains 
unclear whether organic ligands would significantly increase Fe solubility of ambient aerosol particles.

5.  Summary and Conclusion
Fine (<1 μm) and coarse (>1 μm) particles were simultaneously collected during November–December 2019 at a 
suburban site in Qingdao, in order to understand abundance and fractional solubility of aerosol Fe. Average mass 
concentrations of total Fe were found to be 798 ± 466 and 801 ± 534 ng/m3 for coarse (range: 195–2,193 ng/
m3) and fine particles (range: 104–2,301 ng/m3) during the entire campaign, showing no significant difference 
between coarse and fine particles. Total Fe was well correlated with total Al for both fine and coarse particles, 
suggesting that desert dust was the major source for aerosol Fe. Furthermore, the median values of Fe enrichment 
factors were determined to be 2.6 and 1.9 for coarse and fine particles, implying nonnegligible contribution of 
non-dust sources to aerosol Fe. Average soluble Fe concentrations were found to be 7.7 ± 14.5 and 7.3 ± 7.6 
for coarse (range: 0.6–73.7 ng/m3) and fine particles (range: 0.6–41.2 ng/m3), showing no significant difference 
between fine and coarse particles.

Fe solubility was found to be in the range of 0.11%–4.63% (average: 0.80 ± 1.03%) for coarse particles, signifi-
cantly lower than those for fine particles (range: 0.07%–5.91%; average: 1.29 ± 1.41%). Higher Fe solubility in 
fine particles was partly because enhancement of Fe solubility by acid processing was more significant in fine 
particles, and this was supported by the fact that calculated pH values were lower for fine particles than coarse 
particles. It could also be partly due to enrichment of dust particles with lower Fe solubility in coarse particles 
and enrichment of anthropogenic particles with higher Fe solubility in fine particles.

When compared to clean days, total Fe concentrations were substantially increased during dust and haze days, 
and mass fractions of total Fe were elevated in dust days and reduced in haze days; moreover, soluble Fe con-
centrations showed no obvious change in dust day but were significantly increased during haze days, and Fe 
solubility was significantly reduced in dust days and enhanced during haze days. This implied that at least for our 
measurement periods, dust events did not lead to significant increase in soluble aerosol Fe though they substan-
tially increase total aerosol Fe. Furthermore, Fe solubility in fine and coarse particles observed in our work during 
dust days was very similar to those for desert dust collected at source regions, indicating that Fe solubility of dust 
particles was not significantly increased when they were transported to Qingdao during dust events.

Fe solubility was correlated with BC, [nss-K+]/[Al] and [Pb]/[Al] for fine particles, but such correlations did not 
exist or were very weak for coarse particles. This may imply that contribution of primary emission to Fe solubility 
enhancement was important for fine particles but minor for coarse particles. Fe solubility was well correlated 
relative abundance of secondary acidic species for both fine and coarse particles, indicating that acid processing 
significantly enhanced aerosol Fe solubility for coarse and fine particles. Our work found that higher Fe solubility 
(>1%) usually required high aerosol acidity (pH < 4) and high RH (>60%), revealing critical roles of aerosol 
acidity and water content in regulating aerosol Fe solubility.
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Introduction 25 

The supporting information contains one table and seven figures in total. 26 

 Table S1 summarizes mass concentrations of different species (PM2.5, PM10, total Fe, 27 

soluble Fe, sulfate, nitrate, and ammonium) and Fe solubility during dust, haze and clean 28 

days. 29 

 Figure S1 shows the wind rose during the campaign. 30 

 Figure S2 shows time series of water soluble inorganic ions in fine and coarse particles, 31 

ratios of mass concentrations in fine particles to those in coarse particles for sulfate, nitrate 32 

and ammonium, and mass concentrations of black carbon. 33 

 Figure S3 shows Fe solubility versus [nss-sulfate]/[Fe] and [nitrate]/[Fe] for fine and coarse 34 

particles. 35 

 Figure S4 shows Fe solubility versus (2×[sulfate]+[nitrate]) for fine and coarse particles. 36 

 Figure S5 shows Fe solubility versus nss-sulfate and nitrate for fine and coarse particles. 37 

 Figure S6 shows time series of mass concentrations of PM2.5, PM10 and fine and coarse 38 

particles. 39 

 Figure S7 shows Fe solubility versus BC concentrations, [nss-K+]/[Al] and [Pb]/[Al] for 40 

coarse particles. 41 

 42 
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Table S1. Mass concentrations of PM2.5 and PM10 (μg/m3); total Fe concentration (ng/m3), soluble 46 

Fe concentration (ng/m3) and Fe solubility (%) in fine and coarse particles; sulfate, nitrate, and 47 

ammonium concentrations (μg/m3) in fine and coarse particles during dust, haze and clean days. 48 

The average values and standard deviations are provided. 49 

 dust days haze days clean days 

PM2.5 43±10 170±49 22±10 

PM10 118±14 215±57 35±7 

total Fe in fine particle 1601±635 480±160 329±203 

total Fe in coarse particle 1605±538 1252±367 285±63 

soluble Fe in fine particle 6.1±2.8 23.7±12.3 6.3±8.1 

soluble Fe in coarse particle 2.4±1.3 41.2±23.7 1.7±1.3 

Fe solubility in fine particle 0.39±0.17 4.73±0.82 1.75±1.33 

Fe solubility in coarse particle 0.14±0.03 3.28±1.29 0.61±0.39 

sulfate in fine particle 2.5±0.6 8.3±1.9 2.0±0.8 

sulfate in coarse particle 1.2±0.7 11.1±6.2 1.2±0.6 

nitrate in fine particle 4.0±2.5 13.7±2.9 0.9±0.4 

nitrate in coarse particle 2.9±3.6 16.2±4.4 1.5±1.0 

ammonium in fine particle 2.6±1.1 9.0±1.5 1.4±0.4 

ammonium in coarse particle 1.2±1.0 11.3±4.9 0.9±0.4 

 50 
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 55 

Figure S1. Wind rose which displays wind directions and speeds during the campaign. 56 

 57 
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 60 

Figure S2. Time series of (a) water soluble inorganic ions in fine particles, (b) water soluble 61 

inorganic ions in coarse particles, (c) ratios of mass concentrations in fine particles to those in 62 

coarse particles for sulfate, nitrate and ammonium, and (d) black carbon. 63 

 64 
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 67 

Figure S3. (a) Fe solubility versus [nss-sulfate]/[Fe] for fine particles; (b) Fe solubility versus 68 

[nss-sulfate]/[Fe] for coarse particles; (c) Fe solubility versus [nitrate]/[Fe] for fine particles; (d) 69 

Fe solubility versus [nitrate]/[Fe] for coarse particles. 70 

 71 
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 74 

Figure S4. Fe solubility versus (2×[sulfate]+[nitrate]) (nmol/m3): (a) fine particles; (b) coarse 75 

particles. 76 

 77 
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 80 

Figure S5. (a) Fe solubility versus nss-sulfate (nmol/m3) for fine particles; (b) Fe solubility versus 81 

nss-sulfate (nmol/m3) for coarse particles; (c) Fe solubility versus nitrate (nmol/m3) for fine 82 

particles; (d) Fe solubility versus nitrate (nmol/m3) for coarse particles. 83 

 84 
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 87 

Figure S6. Time series of mass concentrations of aerosol particles: (a) PM2.5 and PM10; (b) fine 88 

and coarse particles. 89 

 90 

 91 
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 93 

Figure S7. Fe solubility versus (a) BC concentrations, (b) [nss-K+]/[Al] and (c) [Pb]/[Al] for 94 

coarse particles. Haze days, represented by black squares, are not included in correlation analysis; 95 

in addition, the two outliers, represented by blue squares in Figure S7c, are not included in 96 

correlation analysis. 97 

 98 
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